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PBS script for ssrun

ssrun output

ssrun -usertime output analyzed with prof -b -q 8 -dsolist
ssrun -fpesamp output analyzed with prof -
ssrun -fpesamp output analyzed with prof -h
ssrun -ideal output analyzed with prof -b -basichlock -q 8
ssrun -dsc_hwe output analyzed with prof -

Tracesfloating point with ssrun -fpe and analyzed with prof

http://www.nas.nasa.gov/~schang/origin_opt.htmi



Friday, June 22, 2001 Performance Profiling and Optimization Page: 2
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o Replace Divison by Multiplication

@ |ncrease Page Size to Reduce TLB Miss and Page Fault

e Interchange L oops to Improve Cache Utilization

e Group Data Used at the Same Time to Reduce Traffic to Cache

o Remove Cache Trashing by Re-dimensioning Array Sizes not to be Power of Two
e Compiler Assisted Optimization
[ ]
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Software Pipelining - Instruction Scheduling
Obtain Software Pipelining Messages

Improve Cache Utilization with Cache Blocking
Use Vector Intrinsics for Better Performance
Optimization with Inter-Procedural Analysis
Inlining with -INLINE

UNDERSTANDING THE ORIGINS

Distributed Memory Multi-Processors

In amultiprocessor configuration, each processor has fast access to its own local memory but no direct access to the memory of adifferent processor. (a procesor does not know the address of a datum
that residesin the memory of adifferent processor.) When datalocated in the memory of adifferent processor is needed, amessage is sent via the inter-processor network.

Example: Distributed memory parallel processors

o Any networked computer (for example, PC and workstations) that can participate in clusters.
o Massively Parallel Processors that use fast distributed memory.

Processa Processa Processor

{ Memory { Memory { Memory

High Speed Network

Shared Memory Multi-Processors
Memory in amultiprocessor configuration, usualy RAM, which can be accessed by more than one processor, usualy viaa shared bus or network.

Two of the memory access models for shared memory machines:

o Uniform Memory Access (UMA) model:

In the UMA model, the memory is shared uniformly amongst all processors. It allows each processor equal accessto all memory locations. The memory in UMA architecture istypically
implemented in a central location with the processors acquiring access across a high-speed interconnection mechanism such as abus or crossbar switch.

Example:

The Cray C90 machine

[ | [ | Lo

| Comonen Memory |

o Non-Uniform Memory Access (NUMA) model:
In the NUMA model the memory is physically distributed amongst the processors, but maintains a global address space. (a processor knows the address of a datum that residesin the memory of
adifferent processor) The memory is still shared, but access time will differ depending on whether the requested memory addressis local or remote to the requesting processor. A remote
memory access requires acommunication across the interconnection network which links the processors and thus the distributed memory.
Example:

The SGI origins machines.

http://www.nas.nasa.gov/~schang/origin_opt.htmi
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Note: Each black square in the above diagram represents a 'node’. Nodes are connected through Routers/Craylink interconnect.

The Origin 2000 System
An Origin2000 system has the following components:
o NodeBoard

o Processor(s)

1 or 2 R10000 or R12000 processors with on-chip L1 (level-1) cache

o L2cache

1-MB, 4-MB, 8-MB or 16-MB, |level-2 cache, external to each processors

o Hub

allows processorsto talk to its local memory, 1/0O devices and other processors

o Main Memory
64MB upto 4GB

o Directory Memory

This supplementary memory is controlled by the Hub. The directory keepsinformation about the cache status of all memory within its node. (i.e., keep track of which node (either local
or remote) has exclusive ownership of acacheline residesin the local node, and which node(s) has a copy of acache line that residesin the local node.) This status information is used to
provide scalable cache coherence, and to migrate data to anode that accesses it more frequently than the present node.

o CrayLink Interconnect

Thisisacollection of very high speed links and routers that is responsible for tying together the set of hubs that make up the system. The important attributes of CrayLink Interconnect areiits

low latency, scalable bandwidth, modularity, and fault tolerance.
e |/O Devices

o XIO and Crossbow I nterfaces

These arethe internal /O interfaces originating in each Hub and terminating on the targeted 1/0 controller. X10 (X10 card) uses the same physical link technology as CrayLink
Interconnect, but uses a protocol optimized for 1/O traffic. The Crosshow ASIC is a crossbar routing chip responsible for connecting two nodes to up to six /O controllers.

o |/O Controllers

Origin2000 supports anumber of high-speed I/O interfaces, including Fast, Wide SCSI (akind of bus), Fibrechannel, 100BASE-Tx, ATM, and HIPPI-Serial. Internally, these
controllers are added through X10 cards, which have an enbedded PCI-32 or PCI-64 bus. Thus, in Origin2000 I/O performance is added one bus at atime.

| Node board

- * /0 Cantrallors

"
LING R4650 /|

il
: il
e et |

==

Marnary & Directony |

Suggested Reading:

A— m

Application Programmer's/C Figure 1-14 : Block Diagram of an Origin2000 System

The Origin Machinesat NAS

Hereisalist of resources of the origin machines available for users:

http://www.nas.nasa.gov/~schang/origin_opt.htm

Page: 3



Friday, June 22, 2001

Hostname |Turing ” Fermi " Hopper " Steger ” L omax |

Processor

CPU R10000 || R10000 || R10000 || R10000 || R12000
CPU-Clock 195MHz || 195MHz || 250MHz || 250MHz || 400MHz
NCPUS/Node 2 2 2 2 2

# of Nodes 12 4 32 128 256
NCPUS 24 8 64 256 512
Memory

Local Memory/Node" 512MB || 250MB || 512MB || 512MB || 768M B |

Total Memory 7GB 1GB 16GB 64GB 192GB
Free Memory/Node || ~490MB || N/A ~490MB || ~490MB || ~700M B
L1 Cache Size 32KB 32KB 32KB 32KB 32KB

L2 Cache Size 4MB 4vVB 4MB 4MB 8vB
Page Size 16KB 16KB 16KB 16KB 16KB

1/10

Juluserid N/A 300MB || N/A N/A N/A
/scratchl 100GB || N/A 200GB || 400GB || ~800GB
/scratch2 100GB || N/A 200GB || 400GB || ~500GB
Function " front-end ” server " compute " compute ” compute |

Performance Profiling and Optimization

Note: 4 of the 12 nodes inturing contain ~760MB of memory each, the remaining 8 nodes contain 512MB of memory each.

For further information, refer to the configuration diagram for each machine. http:/in.nas.nasa.gov/Publications/ConfigDiags/

The R10000/R12000 Processors

The MIPS R10000 and R12000 processors were designed with afew characteristics to achieve optimum performance.

o Four-Way Superscalar Architecture

Four-way | can fetch and decode 4 ingiructions

Superscalar| [has enough i

lependent, pi

execution units that can complete more than one instruction per clock cycle

cle

The execution units:

[2integer units |[for address computation, arithmetic and logical operations on integers|

[2 floating point units|[1 adder and 1 multiplier

[L1oad/store unit " |[for managing memory access

e Out-of-Order Execution

[Out-of-Order |[CPU dynamically executesinstructions as their operands become available and thus instructions may not be executed in a predictable, sequential order |

3instruction queues (1 integer queue, 1 floating point queue and 1 load/store queue) are used to select which instructions to issue dynamically to the execution units. Up to 32 instructions can be
in progress simultaneously.

The result generated out of order istemporary until al previous instructions have been successfully completed. At that time, the instruction executed out of order is ‘graduated'.

Out-of-Order Execution helps to hide memory latency.

Branch Prediction

[Branch Prediction|[In the case that the input operand of a conditional branch is not ready, CPU predicts which way the branch will go and executes the instructions speculatively along the path |

The CPU may speculate on the direction of branches nested four deep. (up to 4 outstanding branch predictions)

Branch prediction also helps to hide memory latency.

Instruction Latency

L oad/Store Latency (in clock periods)
Integer

[add, sub, Togic ops, shift, branches|[1 |
[multiply (32-bits, signed |[5/6 |
[multiply (64-bits, signed (910 |
[divide (32-bit/64-bit) (35767 |
Floating Point

add, compare, convert 2

multiply 2

multiply-add (bypass/not) 2/4

divide, reciproca (single/double) ||12/19

sgrt (single/double) 18/33
|reciprocal sgrt (single/double) 30/52

http://www.nas.nasa.gov/~schang/origin_opt.htmi
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Memory Hierarchy

e registers

e Llinstruction cache and L1 datacache

e L2 unified (instruction and data) cache

e |ocal and remote memory

o disk

The CPU can make use only of datain registers, and it can load datainto registers only from the primary cache. So data must be brought into the primary cache before it can be used in calculations. The
primary cache can obtain data only from the secondary cache, so @l datain the primary cache is simultaneously resident in the secondary cache. The secondary cache obtains its data from main memory.

CPU madule Execution unit
{IFnm and registers

Tranzlation
lookaside

MIPS R4X00;
RE000, RB0O0 or R10000

What is"Translation Lookasit Memory

) Figure 1-1 CFU Access to Memory
TLB, Virtual Memory ¢

Theoriginsat NAS are so called 'Virtual Memory' machines which allow (1) the operating system to freely partition the physical memory of the system among the running processes while presenting a
uniform virtual address space to all jobs and (2) processes to access address space much larger than the physical memory space.

Virtual memory is divided into pages. Thus, a page is the smallest continuous memory that the operating system can allocate to your program. For the origins at NAS, the default page sizeis set to be
16K B. However, this page size can be changed when necessary.

Each virtua addressis composed of avirtual page number (the most significant bits) and an offset within the page (the N least significant bits, in the case of apage size 16KB, N = 14). In trandating the
virtual addressto aphysical address, the offset isleft unchanged and the virtual page number is mapped to a physical page number. Thisis recombined with the offset to give aphysical address (i.e,, a
location in physical memory).

For example, for 32-bit virtual address with a page size of 16K B, bits 13:0 represent the offset within a page and bits 30:14 represent avirtual page number from the 2** 17 pages in the virtual segment.

(Rl R LTI pepel [T B lflefle o] fo]

‘ Virtual Page Number | Page Offset ‘

The operating system trand ates between the virtual addresses your programs use and the physical addresses that the hardware requires. These trandations are done for every memory access, so, to keep
their overhead low, the 64 most recently used page addresses are cached in the trand ation lookaside buffer (TLB). This allows virtual-to-physical trandation to be carried out with zero latency, in
hardware - for those 64 pages.

Roleof TLB in Memory Referencing

http://www.nas.nasa.gov/~schang/origin_opt.htm
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CPU meodule Execution unit
{IPnry and reqgisters

Translation
lockaside

Secondary
cache

System bus

MIPS R4X00;
RE000, RBOGO or B10000

When avirtual memory locati Memory he Translation Lookaside Buffer for an entry
containing the page number . itry for the referenced pagein TLB, a TLB misshas
occurred. Only then must the: physical addressin amemory table and loadsit into

oneof the TLB registers. Thu Figure 1-1 CFU Access to Memory

Thusthe TLB actsasacache 1ur 11eyueriuy-useu page auunesses, 11ie VIILUA THEHIUTY U1 dprogidin s ustaly U idyer uid o4 pages. 1 e most recently used pages of memory (hundreds or
thousands of them) are retained in physical memory, but depending on program activity and total system use, some virtua pages can be copied to disk and removed from memory.

A 'minor page fault' is said to occur when a program suffersa TLB miss but the referenced page is found in the physical memory by the operating system. If the operating system discovers that the
referenced page is not presently in physical memory, a‘'major page fault' has occurred and the program is further delayed while the page is read from disk.

L1and L2 Caches

[Cache Type |[Total Size |[Cache Line Size|[# of cachelines |[Mapping Method _|[Replacement Policy |
[CTTnstruction Cache|[32KB |[64-byte |[512 |[2-way set associative|[Least Recently Used (LRU) |
[C1Data Cache |[32KB |[32-byte |[1024 |[2-way set associative|[LRU |
[C2 Unified Cache  |[4MB ; 8MB (for lomax) |[128-byte |[2**15=32768 ; 2** 16=65536 | [2-way set associtive|[LRU \

The L1 and L2 caches are divided into cache lines. For the L1 instruction cache, L1 data cache and L2 cache, the size of acachelineis 64 bytes, 32 bytes and 128 bytes, respectively. Thus, the number of
cache lines for each cache is 32K B/64bytes= 512 lines for L1 instruction cache, 32K B/32bytes = 1024 linesfor L1 data cache and 4MB/128 bytes= 2** 15 lines for L2 cache (for lomax, there are
8MB/128bytes = 2** 16 lines).

The use of cache line makes sure that a high bandwidth between the caches and memory is maintained. When a particular word is copied into cache, several nearby words are copied with it. If 1 word is
4-byteslong, one L 1 data cache line can hold 8 consecutive data, and one L2 cache line can hold 32 consecutive data

Two-Way Set Associativity

When adatum isloaded into either L1 or L2 cache, the cache line it goesto is not random. In fact, with the use of two-way set associative mapping method, there are only two specific cache linesthat a
datum can reside. The two cache lines that this datum can reside are determined by the middle bits of the address of this datum. In the case where the L1 cache size is 32KB with 32B per cache line and
L2 cache sizeis4MB with 128B per cache line, the following figure illustrates how many and which middle bits of the address are used to determine the cache lines a datum will used. An exampleis
provided to further demonstrate how to determine the two L 1 cache lines and two L 2 cache lines adatum can use.

[l [LTT T 1l T [ [ pspel | 1 e prfelels eloilele o]

L1 cache Tag L1 cache Line Numbet Bytes/Line|
L2 cache Tag |  L2cache Line Number | Bytes/Line |
Virtual Page Number Page Offset |

Example: Determination of the Cache Linesfor a Datum

For ease of discussion, all numberswill be converted from binary to decimal in this example.

http://www.nas.nasa.gov/~schang/origin_opt.htm
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If the base address of adatum is represented by 44556676 in decimal, the two L2 cache lines this datum can reside are line number 4035 and 8131 as determined below:
44556676/(4MB/2 way) = 21 remainder 516484

516484/128B (L2 cache line size) = 4035 remainder 4

Thefirst L2 cache line this datum can reside = 4035

The second L2 cache line this datum can reside = 4035 + (2** 15 lines/2 way) = 8131

Similarly, for the two L1 data cache lines,

44556676/(32K B/2 way)=2719 remainder 8580

8580/32B (L1 data cache line size) = 268 remainder 4

Thefirst L1 data cache line this data can reside = 268

The second L 1 data cache line this data can reside = 268 + (1024 lines/2 way) = 780

To determineif adatum isin cache, one only needs to check these two specific cache lines. Once the two cache lines are determined, one checks the cache tag on each of the two linesto seeif it matches

therest of the address. If it does, this cache line contains our data and we have a cache hit. If the cache tag does not match the rest of our address, we have a cache miss and the data must be loaded from
the next level of the memory hierarchy.

If the program refers to two data whose middle address bits are identical, copies of both can be maintained in the cache simultaneously. When a third datum with the same middle address bitsis accessed,
it replaces one of the two previous data - the one that was |east recently accessed.

Example: L2 Cache Trashing among 3 Data with Identical Middle Address Bits

In the following program, each one of the 3 arrays a, b and ¢ occupy exactly 2M B of memory and thus a(i,j), b(i,j) and c(i,j) have identical low-21 bits (bits 20:0) in their base addresses. Lets also assume
that the base address of a(1,1) is 44556676 in decimal. Thus a(1,1) can only residein L2 cache line numbers 4035 or 8131. If &(1,1) isin line 4035, then b(1,1) can residein line number 8131. When
¢(1,1) isneeded, an L2 cache line that contains either a(1,1) or b(1,1) needs to be replaced with data containing c(1,1) because ¢(1,1) can only reside in either line number 4035 or 8131 as a(1,1) and
b(1,1).

di mension /abc/ a(1024,512), b(1024,512), c(1024, 512

do j=1,512
do i=1,1024
a(i,j)=a(i,j)+b(i,j)+c(i,j)
end do

end do

Quiz: If the above codeisrunin systems (asin lomax) whose L2 cache is two-way set associative, itssizeis 8MB and each L2 cachelineis 128B, will the two L2 cache lines for a(1,1) be same as those
two linesfor b(1,1) ? What about c(1,1) ?

The Situations that Cache Latency Applies
A cache miss occurs when the desired datais not found. A delay (latency) applies when:
o The cache ling(s) where the desired data should reside is empty.
o Thecacheline needsto flush its current contents (which have been modified) back to memory, and replaced with the desired data.

o The contents of the cache line have not been modified and will be discarded in order to load in the desired data.

Principles of Good Cache Use
e A program ought to make use of every word of every cacheline that it touches.
Clearly, if aprogram does not make use of every word in acache line, the time spent loading the unused parts of the line is wasted.
e A program should use acacheline intensively and then not return to it later.
When aprogram visits a cache line a second time after adelay, the cache line may have been displaced by other data, so the program is delayed twice waiting for the same data.

Memory Access L atency

Latency of memory accessis best measured in CPU clock cycles. For a250MHz CPU, 1 clock cycleis 4 nanoseconds. The latency of data access becomes greater with each cache level. A miss at each
level of the memory hierarchy multiplies the latency by an order of magnitude or more. Clearly a program can sustain high performance only by achieving avery high ratio of cache hits at every level.

http://www.nas.nasa.gov/~schang/origin_opt.htmi
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[Memory Hierarchy |[Catency (in clock periods) |
[CPU Register /[0 |
[L1 cache hit |[2/3 |
[L1 cache miss satisfied by L2 cache hit |[8/10 |
[L2 cache miss satisfied from main memory, no TLB miss ||WO (depending on the node where the memory resides) |
[TLB miss requiring only reload of the TLB to refer to avirtual page already in memory (minor page fault) [~ 2000

[TLB miss requiring virtual pagetoload from disk (malor pagefal) ||~ hundreds of millions |

PERFORMANCE PROFILING
e Do your performance profiling using dedicated node(s)

Measurement of the performance of your code on a shared environment (for example, turing) is misleading. Do your measurement using dedicated nodes by submitting it through PBS in order
to get nodes dedicated to your job.

o Remember that performance could till vary even with dedicated node(s)

The fact that the memory location your job use (if more than 1 node for hopper and steger, and more than 8 nodes on lomax) may be different from run to run means that you may get different
performance.

o Measure change in performace only on the same machine

Available Tools
e time, timex, ssusage, etime, dtime, second, timef
o time
time - return elapsed time, user time and system time in seconds to standard error.
time may be directed to produce other resource usage reports via command line options. Read man page for details.
Example: /bin/time a.out

real 1.415
user 1.350
sys 0.043

o timex
timex - return elapsed time, user time and system time in seconds. It aso reports process data and system activity when options are used. Read man page for details.

| found that the options are only working on turing, not hopper and lomax

o ssusage
ssusage - return elapsed time, user time and system time and other resources used. ssusage is a SpeedShop executable. Read man page for details.
Example: /bin/ssuage a.out
The usage information is printed to stderr in the form:
1.42 redl, 1.35 user, 0.04 sys, 0 magjf, 39 minf, 0 sw, 1 rb, 0 wh, 37 vcx, 0icx, 5696 mxrss

o

etime, dtime, second functions
etime - return user+system execution time in seconds since the start of execution of the program.

dtime - return user+system execution time in seconds since the |ast call to dtime, or the start of execution on thefirst call.

second - returns the user time for a process in seconds since the start of execution of the program. The implementation on SGI of second gets the time from the system function ETIME.

Note : etime, dtime and second functions have to be declared asreal*4 even if therest of program usereal*8.

Example: Time profiling using etime

Sample program : etimef

http://www.nas.nasa.gov/~schang/origin_opt.htmi
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program etime
! To find the time spent in sub, one
real *8 a(1024, 1024)
real*4 etime, tarray(2)
pi = 3.14159
cal | random nunber (a)

do k=1,10
pi = pi**(k)

tl=etime(tarray)
wite (6,*) "t1 =", t1
call sub(a,pi)
t2=etime(tarray)
wite (6,*) "t2 =", t2

end do

stop
end

subroutine sub(a, b)
real *8 a(1024, 1024)

a(i,j)=a(i,j)/b
end do
end do

return
end

! etime is called before and after sub is called
has to
! calculate the difference between t1 and t2

To compile and execute

f90 -0 etimerun -64 -r8 etine.f
etimerun > etime. out

The output

Performance Profiling and Optimization

25039100646972656
53308498859405518
53329503536224365
79606801271438599
79623997211456299
0392590761184692
0394420623779297
2822780609130859
2824519872665405
5241659879684448
5243419408798218
7203249931335449
7204980850219727
9164799451828003
9166569709777832
112468957901001
1126461029052734
3085849285125732
3087630271911621

NMNNNNRERRRRRPRRPRPROO0000

5047061443328857 # Notice the values for

t1 and t2 are increasing.

Example: Time profiling using dtime

Sample program : dtimef

program dti ne

! t2 gives the time spent in sub

real *8 a(1024, 1024)
real *4 dtime, tarray(2)

pi = 3.14159
cal | random nunber (a)

do k=1,10
pi = pi**(k)

tl=dtime(tarray)
wite (6,*) "t1 =", t1
call sub(a,pi)

t2=dti me(tarray)
wite (6,*) "t2 =", t2

end do

stop
end

subroutine sub(a, b)
real *8 a(1024, 1024)

a(i,j
end do
end do

)=a(i,j)/b

return
end

! dtine is called before and after sub is called

To compile and execute

f90 -o dtimerun -64 -r8 dtine.f
dtinerun > dtine.out &

The output

http://www.nas.nasa.gov/~schang/origin_opt.htmi
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tl = 0.24668100476264954

t2 = 0.29617798328399658

tl = 1.42000004416331649E-4
t2 = 0.25391101837158203

tl = 1.47999991895630956E- 4
t2 = 0.25369700789451599

t1 = 1.44999998155981302E- 4
t2 = 0.24676500260829926

t1 = 1.49999992572702467E- 4
t2 = 0.25284498929977417

tl = 1.50000007124617696E- 4
t2 = 0.20771600306034088

tl = 1.42000004416331649E-4
t2 = 0.20047000050544739

tl = 1.50999985635280609E- 4
t2 = 0.20701700448989868

tl = 1.53000000864267349E- 4
t2 = 0.20787800848484039

t1 = 1.47999991895630956E- 4
t2 = 0.20037999749183655 #Notice that the value for every t2 is about 0.2 sec

o timef function
timef - return elapsed wall-clock time in milliseconds since the previous call to timef
o timef function has to be declared as real*8 or real and compiled with -r8 option

o Current default compiler version MIPSpro.7.3.1.1m does not work with timef. The Fortran librarieslibfortran.so and libffio.so contain subroutines with the same name. This
can cause timef() to return NaN or Infinity.

o Useolder versions of compiler such as MIPSpro.7.2.1.1m, MIPSpro.7.2.1.2m, MIPSpro.7.3.0.0 or the new version M1PSpro.7.3.1.2m if you want to use timef.

o Perfex (Hardwar e Performance Counter)

The R10000 and R12000 processors include counters that can be used to count the frequency of events during the execution of a program. Such frequency can be translated into an estimated
time spent for each event and thus will be useful in understanding the nature of the code and in optimizing it.

The R10000 processor supplies two performance counters for counting certain hardware events. Each counter can track one event at atime and there are a choice of sixteen events per counter.

Thefirst counter track events 0 - 15 and the second one tracts events 16-31. There are also two associated control registers which are used to specify which event the relevant counter is counting.

The R12000 processor supplies two performance counters for counting hardware events. Each counter can track one event at atime, and you can choose among 32 events per counter.

o The 32 R10000 Events

On systems with R10000 processors, these events are as follows:

| Event ” Description

0 Cycles
1 Issued instructions
2 Issued loads
| 3 ” I ssued stores
4 Issued store conditionals
5 Failed store conditionals
6 Decoded branches or Resolved branches (depending on versions of R10000)
7 Quadwords written back from secondary cache
8 Correctable secondary cache dataarray ECC errors
9 Primary instruction cache misses

10 Secondary instruction cache misses

11 Instruction misprediction from secondary cache way prediction table

12 Externd interventions

13 External invalidations

14 Virtua coherency conditionals or ALU/FPU forward progress cycles (depending on versions of R10000)

15 Graduated instructions

16 Cycles

17 Graduated instructions

18 Graduated loads

19 Graduated stores

20 Graduated store conditionals

21 Graduated floating-point instructions

22 Quadwords written back from primary data cache

23 Tranglation lookaside buffer (TLB misses)

24 Mispredicted branches

| 25 ” Primary data cache misses |

[26 || secondary data cache misces |

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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27 Data misprediction from secondary cache way prediction table
28 External intervention hitsin secondary cache

29 External invalidation hitsin secondary cache

30 Store/prefetch exclusive to clean block in secondary cache

31 Store/prefetch exclusive to shared block in secondary cache

Detail description of the R10000 Counter Event can be found in Appendix B of SGl's Origin 2000 and Onyx Performance Turing and Optimization Guide .

o The 32 R12000 Events

On systems with R12000 processors, these events are as follows:

Event || Description
0 Cycles
1 Issued instructions or Decoded instructions
2 Decoded loads
3 Decoded stores
| 4 ” Miss handling table occupancy |
5 Failed store conditionals
6 Resolved conditiona branches
| 7 ” Quadwords written back from secondary cache |
8 Correctable secondary cache data array ECC errors
9 Primary instruction cache misses
10 Secondary instruction cache misses
11 Instruction misprediction from secondary cache way prediction table
12 Externa interventions
13 External invalidations
14 Not implemented
15 Graduated instructions
16 Executed prefetch instructions
17 Prefetch primary data cache misses
18 Graduated loads
19 Graduated stores
20 Graduated store conditionals
21 Graduated floating-point instructions
22 Quadwords written back from primary data cache
23 Trandation lookaside buffer (TLB misses)
24 Mispredicted branches
25 Primary data cache misses
| 26 ” Secondary data cache misses |
27 Data misprediction from secondary cache way prediction table
28 State of intervention hitsin secondary cache
|29 || State of invalidation hitsin secondary cache |
30 Store/prefetch exclusive to clean block in secondary cache
31 Store/prefetch exclusive to shared block in secondary cache

o perfex command

The perfex commands provide convenient interfaces to hardware counter information. Use this command to measure the per for mance of the entire program.

o %perfex [options] executable_name [arguments]
O options:

-e(cntl) -e (cnt2) ” specific counts

-a all counts

-X exceptional level counting
-y time estimates, metrics
-mp all data per thread

-t table of ideal numbers

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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Note : On R10000 processors (hopper and steger), the default event to be tracked by the first counter is event 0 and that by the second counter is event 16. If two events that
belong to the same counter are chosen by the user, one of them will be automatically changed to the default event. For example, "-e 23 -e 25" will be changed to "-e 0 -e 25
7-e12" will be changed to "-e 7 -e 16". This seems to aso apply to R12000 processors that lomax uses.

Option -aproduces counts for al events by multiplexing over 16 events per counter. The OS does the switching round robin at clock interrupt boundaries. The resulting counts
are normalized by multiplying by 16 to give an estimate of the values they would have had for exclusive counting. Due to the equal-time nature of the multiplexing, events present
in large enough numbers to contribute significantly to the execution time will be fairly represented. Events concentrated in afew short regions (for instance, instruction cache
misses) may not be projected very accurately.

o You need to set the hardware counters to user mode (defaullt is at global mode) when you submit your job to PBS. Specifically, you can do this (by requesting hpom=1) on the
command line

%sub -1 hpmel job_script
or include the following in your PBS script

#PBS -1 hpn¥Fl

Example: Tofind the cost (in cycles) for 1 occurrence of each event on the 250M Hz R10000 hopper and steger
Sample PBS script

#PBS -1 hpnFl
/bin/tinme perfex -a -t #no executable needed for option -t

The perfex output is sent to standard error

/bin/time perfex -a -t
WARNI NG Mul tiplexing events to project totals--inaccuracy possible.

Costs for | P27 processor
M PS R10000 CPU
CPU revision 3.x

Typi cal M ni rum Maxi num
Event Counter Nanme Cost Cost Cost
0 Cycles 1.00 cl ks 1.00 cl ks 1.00 cl ks
1 Issued instructions. 0.00 clks 0.00 clks 1.00 cl ks
2 Issued | oads. 1.00 cl ks 1.00 cl ks 1.00 cl ks
3 Issued stores... 1.00 clks 1.00 clks 1.00 clks
4 Issued store conditionals.. 1.00 clks 1.00 clks 1.00 clks
5 Failed store conditionals............. ... ... i 1.00 clks 1.00 clks 1.00 clks
6 Decoded branches......... ... .. .. . .. .. .. 1.00 cl ks 1.00 cl ks 1.00 cl ks
7 Quadwords written back from scache 6.40 clks 4.23 clks 6.40 cl ks
8 Correctabl e scache data array ECC errors..... 0.00 clks 0.00 cl ks 1.00 cl ks
9 Primary instruction cache misses............. e . 18.02 cl ks 5.63 clks 18.02 cl ks
10 Secondary instruction cache m SSeS.. ... ... ... ...t 75.50 cl ks 49.36 clks 84.00 cl ks
11 Instruction misprediction fromscache way prediction table 0.00 clks 0.00 clks 1.00 cl ks
12 External interventions.....................oiiiiiiiiiiaaii 0.00 clks 0.00 clks 0.00 clks
13 External invalidations.. 0.00 clks 0.00 clks 0.00 clks
14 ALU FPU progress cycles. 1.00 clks 1.00 clks 1.00 clks
15 Graduated instructions.. 0.00 clks 0.00 clks 1.00 clks
16 Cycles.................. 1.00 cl ks 1.00 cl ks 1.00 cl ks
17 Graduated instructions.. 0.00 clks 0.00 clks 1.00 cl ks
18 Graduated loads. ... 1.00 clks 1.00 clks 1.00 clks
19 Gaduated stores... 1.00 clks 1.00 clks 1.00 clks
20 Graduated store conditionals 1.00 clks 1.00 clks 1.00 clks
21 Gaduated floating point instructions........... 1.00 cl ks 0.50 clks 52.00 cl ks
22 Quadwords written back fromprimry data cache.. 3.85 clks 3.14 clks 4.45 cl ks
23 TLB misses.......... 68.09 cl ks 68.09 clks 68.09 cl ks
24 M spredicted branches 1.42 clks 0.64 clks 5.22 clks
25 Primary data cache nisses e 2.82 clks 9.01 cl ks
26 Secondary data cache M SSEeS. .. ... ... ... 75.50 cl ks 49.36 cl ks 84.00 cl ks
27 Data misprediction fromscache way prediction table 0.00 clks 0.00 clks 1.00 cl ks
28 External intervention hits in scache... e 0.00 clks 0.00 clks 0.00 clks
29 External invalidation hits in scache............... 0.00 clks 0.00 clks 0.00 clks
30 Store/prefetch exclusive to clean block in scache.. 1.00 cl ks 1.00 cl ks 1.00 cl ks
31 Store/prefetch exclusive to shared bl ock in scache 1.00 clks 1.00 clks 1.00 cl ks

real 0.298
user 0.026
sys 0.123

Example: Tofind thecost (in cycles) for 1 occurrence of each event on the 400M Hz R12000 lomax

The perfex output
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WARNI NG Mul tiplexing events to project totals--inaccuracy possible

Costs for |P27 processor
M PS R12000 CPU

Typi cal M ni num Maxi num

Event Counter Name Cost Cost Cost

0 Cycles 1.00 cl ks 1.00 cl ks

1 Decoded instructions 0.00 clks 1.00 clks

2 Decoded | oads. 1.00 clks 1.00 clks

3 Decoded stores.. 1.00 clks 1.00 clks

4 M ss handling table occupancy. 1.00 cl ks 1.00 cl ks

5 Failed store conditionals..... 1.00 clks 1.00 clks

6 Resol ved conditional branches 1.00 clks 1.00 clks

7 Quadwords written back from scache 5.90 clks 8.77 clks

8 Correctable scache data array ECC errors..... 0.00 cl ks 1.00 clks

9 Primary instruction cache misses............. P . 4.34 clks 7.01 clks
10 Secondary instruction cache M SSeS. ... ... ...t 99.89 cl ks 63.03 cl ks
11 Instruction misprediction fromscache way prediction table 0.00 cl ks 1.00 clks
12 External interventions................... ... 0.00 clks 0.00 clks
13 External invalidations.. 0.00 clks 0.00 clks
14 ALU FPU progress cycles....... 1.00 cl ks 1.00 clks

15 Graduated instructions........ R 0.00 clks 1.00 clks

16 Executed prefetch instructions...... 0.00 clks 0.00 clks

17 Prefetch prinary data cache nisses. . 0.00 clks 1.00 cl ks

18 Graduated loads. ... 1.00 clks 1.00 clks

19 Gaduated stores. 1.00 cl ks 1.00 clks
20 Graduated store con e 1.00 clks 1.00 clks
21 Gaduated floating point instructions........... 0.50 clks 2.00 clks
22 Quadwords written back fromprimary data cache.................... . 3.14 clks 3.98 clks
23 TLB M SSES. . .ttt 77.78 clks 77.78 clks
24 M spredicted branches.......... ... . . . .. ... .. 7.28 clks 6.00 clks
25 Primary data cache misses........ 2.17 clks 8.50 cl ks
26 Secondary data cache m sses 99.89 clks 63.03 cl ks
27 Data misprediction fromscache way prediction table 0.00 clks 1.00 cl ks
28 State of intervention hits in scache... e 0.00 cl ks 0.00 cl ks
29 State of invalidation hits in scache............... 0.00 clks 0.00 clks
30 Store/prefetch exclusive to clean block in scache.. 1.00 cl ks 1.00 cl ks
31 Store/prefetch exclusive to shared bl ock in scache 1.00 clks 1.00 cl ks

99.89 clks

77.78 clks
8.81 clks

99.89 clks

Quiz : Compare the outputs from Example 1 and Example 2. Why does it cost more cycles on the 400MHz R12000 machine than on the 250M Hz R10000 machine for events such as

10 (Secondary instruction cache misses), 23 (TLB misses), 24 (Mispredicted branches) and 26 (Secondary data cache misses) ?

Example: Use perfex -a-x -y to find the cause of bad performance

In this example, perfex is used to identify the cause of bad performance in a program. Secondary data cache missis found to be the main cause in this program as demonstrated in the

perfex output.
Sampleprogram : L2_cache trash.f

1 program L2_cache_trashi ng

2

3! Arrays a, b, ¢, and d are all 4MB in size. Accessing a(i,j), b(i,j)
4! c¢(i,j), and d(i,j) sinultaneously causes L2_cache_trashi ng when

5! the size of L2 cache is either 4MB (hopper, steger) or 8MB (| omax)
6! with 2-way set associativity

7

8 di mension a(1024,1024), b(1024,1024), c(1024,1024), d(1024,1024)
9

10 call random nunber (b)

11 call random nunber(c)

12 call random nunber (d)

13

14 do j=1,1024

15 do i=1,1024

16 a(i,j)=b(i,j)+c(i,j)*d(i,j)

17 end do

18 end do

19

20 wite (12) a

21

22 stop

23 end

To compile and execute on hopper
%f90 -0 L2_cache trash L2_cache trash.f ! default optimization level is-O0

Performance output from " /bin/time perfex -a-x -y L2_cache_trash"
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/bin/tine perfex -a -x -y L2_cache_trash
WARNI NG Mul tiplexing events to project totals--inaccuracy possible.
Summary for execution of L2_cache_trash
Based on 250 Mz | P27
M PS R10000 CPU
CPU revision 3.x
Typi cal M ni num Maxi num
Event Counter Name Counter Val ue Time (sec) Time (sec) Time (sec)
0 Cycles.. 653654512 2.614618 2.614618 2.614618
16 Cycles. . . 653654512 2.614618 2.614618 2.614618
26 Secondary data cache m sses.. F 4178336 1.261857 0.824971 1.403921
14 ALUFPU progress CyCles. ...........iuiuiiiiiiiininnnnnannn. 82554064 0. 330216 0. 330216 0. 330216
7 Quadwords written back from scache 8635504 0. 221069 0.146113 0.221069
25 Primary data cache nisses 4348624 0.156724 0. 049052 0. 156724
2 Issued | oads 29675728 0.118703 0.118703 0.118703
18 Graduated | oads. . 29524944 0.118100 0.118100 0.118100
3 Issued stores...... 11268688 0. 045075 0. 045075 0. 045075
19 Gaduated stores... 11248768 0. 044995 0. 044995 0. 044995
22 Quadwords written back fromprimry data cache.. 2475040 0. 038116 0. 031087 0. 044056
21 G aduated floating point instructions 7787744 0. 031151 0. 015575 1.619851
6 Decoded branches. 4437184 0.017749 0.017749 0.017749
10 Secondary instruction cache misses.. 7664 0.002315 0.001513 0.002575
9 Primary instruction cache misses.... 11936 0. 000860 0. 000269 0. 000860
23 TLB mMiSSeS. ..., 1200 0. 000327 0. 000327 0. 000327
24 M spredicted branches. . 7872 0. 000045 0. 000020 0. 000164
4 I'ssued store conditional s 80 0. 000000 0. 000000 0. 000000
30 Store/prefetch exclusive to clean block in scache.. 64 0. 000000 0. 000000 0. 000000
20 Graduated store conditionals....................... e 16 0. 000000 0. 000000 0. 000000
31 Store/prefetch exclusive to shared block in scache.......... 16 0. 000000 0. 000000 0. 000000
1 Issued iNStructions................iiuiiiniininnnaennenons 122630720 0. 000000 0. 000000 0. 490523
5 Failed store conditionals................. [ 0. 000000 0. 000000 0. 000000
8 Correctabl e scache data array ECC errors 0 0. 000000 0. 000000 0. 000000
11 Instruction nisprediction fromscache way predl ction table.. 576 0. 000000 0. 000000 0. 000002
12 External interventions. e e 2144 0. 000000 0. 000000 0. 000000
13 External invalidations. . 9776 0. 000000 0. 000000 0. 000000
15 Graduated instructions.. 167980368 0. 000000 0. 000000 0.671921
17 Gaduated instructions . 134798896 0. 000000 0. 000000 0. 539196
27 Data misprediction fromscache way prediction table......... 1968 0. 000000 0. 000000 0. 000008
28 External intervention hits in scache.................. e 1936 0. 000000 0. 000000 0. 000000
29 External invalidation hits in scache........................ 2240 0. 000000 0. 000000 0. 000000
Statistics
Graduated instructions/cycle 0. 256986
Graduated floating point instructions/cycle........... 0.011914
Graduated loads & stores/cycle........ ... oot 0. 062378
Graduated | oads & stores/floating point instruction... 5. 235626
M spredicted branches/ Decoded branches................ 0.001774
Graduated | oads/Issued loads........... . 0. 994919
Gaduated stores/|ssued stores. .. 0. 998232
Data nispredict/Data scache hits 0. 011557
Instruction mispredict/Instruction scache hits..... 0. 134831
L1 Cache Line Reuse............................o0. 8.376233
L2 Cache Line Reuse........ .. . e 0.040755 This is terrible !'!
L1 Data Cache Hit Rate.............. ... ittt 0. 893347
L2 Data Cache Hit Rate............ ... . . . ... .. . 0.039159 This is terrible !'!
Time accessing nenory/ Tot al 0. 605061
Ti me not neking progress (probably waiting on nenory) / Total tine... 0.873704
L1--L2 bandwi dth used (MB/s, average per process) 68.368153
Memory bandwi dth used (MB/s, average per process). . . . . 257.397088
MFLOPS (@average PEer PrOCESS) . . o u i vttt ettt e e e e e e e e e e 2.978540
real 3.552
user 2.705
sys 0.377
o libperfex

A few functions are provided in libperfex to allow simple access to the hardware event countersin your program. Use these functions if you want to measure the per for mance of

sections of your program rather than the entire program.

C SYNOPSI S

int start_counters( int €0, int el );

int read_counters( int e0, long long *cO, int el, long long *cl);
int print_counters( int e0, long long cO, int el, long long cl);
int print_costs( int e0, long long cO, int el, long long cl);

int |oad_costs(char *CostFileNane);

FORTRAN SYNOPSI S
I NTEGER*8 c0, cl
| NTEGER e0, el
CHARACTER( *n) Cost Fi | eName
I NTEGER*4 function start_counters( e0, el )
I NTEGER*4 function read_counters( e0, cO, el, cl)
I NTEGER*4 function print_counters( e0, cO, el, cl)
I NTEGER*4 function print_costs( e0, cO, el, cl)
I NTEGER*4 function | oad_costs( CostFileNane )

e0 and el : int types specifying which events to count

c0and c1: count values of the specified events

start_counters: zero out the internal software counters and then start counters

read_counters : read the counters and then stop them

print_counters : print the counts of specified events to standard error

print_costs : print the counts together with approximate time estimates as described for perfex.
load_costs: load a cost table from afile. If /etc/perfex.costsis present, it is used instead.

call start_countersimmediately before section of code to be measured

call read_counters and print_countersimmediately after section of code to be measured

ooooooooooo

inlcude libperfex.ain your link/|oad

90 -0 executable program.f -Iperfex

o You need to set the hardware counters to user mode (defaullt is at global mode) when you submit your job to PBS. Specifically, you can do this (by requesting hpm=1) on the

command line

%jsub -1 hpn¥l job_script

or include the following in your PBS script
#PBS -1 hpn¥l

o Theuse of libperfex is currently working on lomax, not on hopper and steger .

if you want to accumulate counts over multiple start/read calls, you must save out the counts and do the accumulation yourself
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Example: Use libperfex to measur e performance

Sample program : L2_cache trash_libperfex.f

program L2_cache_trash_l i bperfex

Use libperfex routines to measure the performance of various sections of the code
In this exanple, event 0 (cycles) and 26 (L2 cache niss) are nonitored

Conpare the counts fromeach section to find where the performance

bottleneck is

di mensi on a(1024, 1024), b(1024,1024), c(1024,1024), d(1024,1024)

integer*8 c0, cl1, cOsum clsum
integer e0, el

e0 0
el 26

call start_counters(e0,el)
! Section 1

call random nunber (b)

call random nunber(c)
call random nunber (d)

call read_counters(e0,cO,el,cl)
call print_counters(e0,c0,el,cl)

call print_costs(e0,c0,el,cl)
cOsunFc0
clsunFcl
e0d = 0 ! you can choose different events to nmonitor
el = 26 ! here | use the same event as in pervious
! section

call start_counters(e0,el)

! Section 2
do j=1,1024
do i=1,1024
a(i,j)=b(i,j)+c(i,j)*d(i,j)
end do
end do
call read_counters(e0,cO,el,cl)
call print_counters(e0,c0,el,cl)
call print_costs(e0,c0,el,cl)
cOsunm=cOsum+c0
clsunm=clsum+cl
ed =0
el = 26
call start_counters(e0,el)

! Section 3
wite (12) a
call read_counters(e0,c0,el,cl)

call print_counters(e0,c0,el,cl)
call print_costs(e0,c0,el,cl)

cOsunmEcOsum+c0
clsunFclsumtcl

call print_costs(e0,cOsum el,clsum

stop
end

To compile and execute on lomax
%f90 -0 L2_cache trash_libperfex L2 _cache trash _libperfex.f -Iperfex

libperfex output (standard error)
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/bin/tine L2_cache_trash_|ibperfex

! Section 1
Event Counter Nane Counter Val ue
0 Oyl @S, . 81779561

26 Secondary data cache nisses 587

Based on 400 Mz | P27
M PS R12000 CPU

Typi cal M ni rum Maxi num
Event Counter Nanme Count er Val ue Time (sec) Time (sec) Time (sec)
0 Oyl es. .. 81779561 0. 204449 0. 204449 0. 204449
26 Secondary data cache misses.......................c.oouuiin.. 587 0.000147 0.000092 0.000147
! Section 2
Event Counter Name Counter Val ue
0 Oyl @S, .o 779856591
26 Secondary data cache misses........................... ... ... 4189221
Based on 400 Mz | P27
M PS R12000 CPU
Typi cal M ni rum Maxi mum
Event Counter Nanme Counter Val ue Time (sec) Time (sec) Time (sec)
0 OycCles. ... 779856591 1.949641 1.949641 1.949641
26 Secondary data cache M SSeS.............iuiiiiinannnnnnn.n 4189221 1.046153 0.660116 1.046153
! Section 3
Event Counter Nane Count er Val ue
0 Oyl @S, . 568271
26 Secondary data cache misses................................. 897
Based on 400 Mz | P27
M PS R12000 CPU
Typi cal M ni mum Maxi mum
Event Counter Nanme Counter Val ue Time (sec) Time (sec) Time (sec)
0 Oycles. ... 568271 0.001421 0.001421 0.001421
26 Secondary data cache M SSeS..............uuiiiiinnninnnnnn.n 897 0.000224 0.000141 0.000224

! 3 Sections Conbined

Based on 400 Mz | P27
M PS R12000 CPU

Typi cal M ni num Maxi num
Event Counter Nane Counter Value Tine (sec) Time (sec) Tine (sec)
0 Cycles 862204423 2.155511 2.155511 2.155511
26 Secondary data cache misses 4190705 1.046524 0.660350 1.046524
real 3.287
user 2.171
sys 0.782

o SpeedShop - ssrun, prof and pixie

SpeedShop is the generic name for an integrated package of performance tools to run performance experiments on executables, and to examine the results of those experiments. A SpeedShop
User's Guide (http://techpubs.sgi.com/li /dynaweb _bin/ebt-bin/0650/nph-infosrch.cgi/infosrchtpl/SGI_Developer/SShop UG) isavailable in SGI's techpubs library if you want to master the

use of SpeedShop.
o SpeedShop provides the following profiling experiment types:
o PC sampling
O |ded time
o User time
o Hardware counter profiling
o Floating point exception tracing
o Heap tracing
o ssrun collects SpeedShop performance data
o pixie sets SpeedShop in expert mode and measure the frequency of code execution
o prof analyzes and displays performance data collected by ssrun and pixie
o SpeedShop does not require specia compilation or re-linking
o SpeedShop.1.4 isrequired in order for theideal time experiment type to work. On hopper, currently you need to include the following in your PBS script until SpeedShop.1.4 version
becomes the default on hopper: (Thisisnot required for steger and lomax)
module load SpeedShop.1.4
o For experiment types that involve hardware performance counters, you need to set hardware counters to user mode when you submit your job through PBS. Specificaly, you can do this

(by requesting hpm=1) on the command line:
%qsub -l hpm=1job_script
or include the following in your PBS script
#PBS -l hpm=1
o For ssrun with experiment types that involve hardware performace (*_hwc and * _hwctime) counters, it isworking currently only on lomax, not on hopper and steger .

o ssrun - SpeedShop Experiment
o Command
SpeedShop experiments are recorded using the ssrun command, as follows:

ssrun [ssrun-options] -exp_type executable_name [executable_args]
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o Options of Experiment Types

The following experiment types are supported on all architectures:

Experiment Typel||Description
Returns CPU time, the time your program is actualy running plus the time the operating system is performing services for your program. The display
generated by prof breaks the program time down into the time used by each function within the program. Uses statistical callstack profiling, based
usertime on CPU time, with atime sample interval of 30 milliseconds. Note: An 032 executable must explicitly link with -lexc for these experiments to work.
Program execution may show significant slowdown compared to the original executable. The stack unwind code sometimes fails to completely
unwind the stack; consequently, caller attribution cannot be done beyond the point of failure.
Returnsthe estimated actual CPU time for each source code line, machine code line, and function in your program. Uses statistical PC sampling,
[flpcsamp[x] using 16-hit bins, based on user and system time, with asampleinterval of 10 milliseconds. If the optional f prefix is specified, asampleinterval of 1
millisecond will be used. If the optional x suffix is specified, a32- bit bin size will be used.
ideal Returns the best possible time of which the program is capable. Uses basic-block counting, done by instrumenting the executable.
fpe [Traces all floating-point exceptions.
h Traces malloc and free calls and also supports various options for debugging heap usage. Use cvperf(1) to display thisinformation; it is not supported
eap with prof(1).
io Traces the following 1/0O system calls: read(2), readv(2), write(2), writev(2), open(2), close(2), dup(2), pipe(2), and creat(2).
mpi Traces calsto various MPI routines and generates afile viewable in the cvperf(1) performance analyzer window. For alist of the routines that are traced,
P see the ssrun(1) man page.
On machines with hardware performance counters (R10000 and R12000 machines), the following additional types are supported:
Experiment Typel||Description
[flgi_hwe Uses statistical PC sampling, based on overflows of the graduated-instruction counter (counter 17), at an overflow interval of 32771. If the optional f
gl prefix is used, the overflow interval will be 6553.
[flcy_hwe Uses statistical PC sampling, based on overflows of the cycle counter (counter 0), at an overflow interval of 16411. If the optional f prefix is used, the
o overflow interval will be 3779.
[flic_hwc Uses statistical PC sampling, based on overflows of the primary instruction-cache miss counter (counter 9), at an overflow interval of 2053. If the
— optional f prefix is used, the overflow interval will be 419.
[flisc_hwe Uses statistical PC sampling, based on overflows of the secondary instruction-cache miss counter (counter 10), at an overflow interval of 131. If the
— optional f prefix is used, the overflow interval will be 29.
[flde_hwe Uses statistical PC sampling, based on overflows of the primary data-cache miss counter (counter 25), at an overflow interval of 2053. If the optional f
— prefix is used, the overflow interval will be 419.
[fdsc_hwe Uses statistical PC sampling, based on overflows of the secondary data-cache miss counter (counter 26), at an overflow interval of 131. If the optional f
— prefix is used, the overflow interval will be 29.
[f]tlb_hwe Uses statistical PC sampling, based on overflows of the TLB miss counter (counter 23), at an overflow interval of 257. If the optional f prefix isused, the
— overflow interval will be 53. |
[flgfp_hwe Uses statistical PC sampling, based on overflows of the graduated floating-point instruction counter (counter 21), at an overflow interval of 32771. If the
gip_ optional f prefix is used, the overflow interval will be 6553.
[f]fsc_hwe Uses statistical PC sampling, based on overflows of the failed store conditionals counter (counter 5), at an overflow interval of 2003. If the optional f
— prefix is used, the overflow interval will be 401.
Uses statistical PC sampling, based on overflows of the counter specified by the environment variable_ SPEEDSHOP_HWC_COUNTER_NUMBER, at
rof hwe aninterval given by the environment variable_ SPEEDSHOP_HWC_COUNTER_OVERFLOW. Note that these environment variables cannot be used to|
prot_| override the counter number or interval for the other defined experiments. They are examined only when the prof_hwc experiment is specified. The default
counter is the primary instruction-cache miss counter and the default overflow interval is 2053.
i hwetime Profiles the cycle counter using statistical call-stack sampling, based on overflows of the graduated- instruction counter (counter 17), at an overflow
9 interval of 1000003.
cy_hwctime Profiles the cycle counter using statistical call-stack sampling, based on overflows of the cycle counter (counter 16), at an overflow interval of 10000019.
ic hwetime Profiles the cycle counter using statistical call-stack sampling, based on overflows of the primary instruction-cache-miss counter (counter 9), a an
— overflow interval of 8009.
isc hwetime Profiles the cycle counter using statistical call-stack sampling, based on overflows of the secondary instruction-cache-miss counter (counter 10), at an
— overflow interval of 2003.
: Profiles the cycle counter using statistical call-stack sampling, based on overflows of the primary data- cache-miss counter (counter 25), at an overflow
de_hwetime interval of 8009.
dsc hwctime Profiles the cycle counter using statistical call-stack sampling, based on overflows of the secondary data- cache-miss counter (counter 26), at an overflow
— interval of 2003.
tlb_hwctime Profiles the cycle counter using statistical call-stack sampling, based on overflows of the TLB miss counter (counter 23), a an overflow interval of 2521. |
ofp_hwctime Profiles the cycle counter using statistical call-stack sampling, based on overflows of the graduated floating-point instruction counter (counter 21), at an
P overflow interval of 10007.
. Profiles the cycle counter using statistical call-stack sampling, based on overflows of the failed store conditionals counter (counter 5), at an overflow
fsc_hwetime |l yerval of 5003
Profiles the counter specified by the environment variable_ SPEEDSHOP_HWC_COUNTER_PROF_NUMBER using statistical call-stack sampling,
based on overflows of the counter specified by the environment variable_ SPEEDSHOP_HWC_COUNTER_NUMBER, at an interval given by the
prof_hwctime environment variable_SPEEDSHOP_HWC_COUNTER_OVERFLOW. Note that these environment variables can not be used to override the counter
numbers or interval for the other defined experiments. They are examined only when the prof_hwctime experiment is specified. The default overflow and
profling counter is the cycle counter and the default overflow interval is 10000019.

Example: PBS script for ssrun with usertime exp_type

#PBS -1 wal | ti me=0:10: 00

cd /cluster/hopper/scratchl/userid <--- your working directory

ssrun -usertinme

L2_cache_trash

Example: PBS script for ssrun with ideal exp_type to be used on hopper

#PBS -1 wal | ti me=0: 10: 00

modul e | oad SpeedShop. 1.4 ! not needed if subnmit to steger or |onmax

cd /cluster/hopper/scratchl/userid
ssrun -ideal L2_cache_trash

Example: PBS script for ssrun with dsc_hwc exp_type

#PBS -1 wal | ti me=0:10: 00

#PBS -1 hpm=l

cd /cluster/hopper/scratchl/userid
ssrun -dsc_hwe L2_cache_trash ! currently working only on | omax

o Output Files

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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The result of an experiment is one or more files that are named by the following convention:
executable_name.exp_type.id

whereid is one of the following one or two-letter codes followed by the process identifier (PID):

[Letter Codd[Description

|
[m | [For the master process created by ssrun; |
p | [For aprocess created by acall to sproc(); |
[f | [For aprocess created by acall to fork(); |
[e | [For aprocess created by acall to exec(); |
[s |For aprocess created by acall to system(); |
[fe |For the exec'd process created by calls to fork() and exec(), with environment varisble_SPEEDSHOP_TRACE_FORK_TO_EXEC set to False. |

Example : output generated from ssrun
L2_cache _trash.usertime.m754877
L2_cache_trash.fpcsamp.m755026
L2_cache_trash.ideal.m1838173

L2_cache trash.dsc_hwc.m1225967

o prof - SpeedShop Report Generation
o Command
Report generation is done through the prof command:
prof [prof-options] executable_name.exp_type.id
Multiple files can beincluded only if they are recorded from the same executable with the same experiment type:
prof [prof-options] executable_name.exp_type.id1 executable_name.exp_type.id2 ....
o Output Options

Options to the prof command are grouped as follows:
o General options
o Output controls options
o Selectivity options
o CPU options
o Debugging options

Some of these options are described here. See prof man page to find details about the rest of the options.

- basi cbl ocks Prints a list of all the basic bl ocks executed, ordered
by the total nunmber of cycles spent in each basic
bl ock. Works only with ideal experiments.

-blutterfly] Causes prof to print a report showi ng the callers and

cal | ees of each function, with inclusive tine

attributed to each. For ideal experinents, the

attribution is based on a heuristic. For the various

call stack sampling and tracing experiments, the

attribution is precise. The usertime, totaltime, and
some _hwcti me experinents are statistical in nature and

so are less exact. This option is ignored for

experiments in which the data does not support

inclusive calculations.

-calipers [nl,]n2
Causes prof to conpute the data between caliper points
nl and n2, rather than for the entire experiment. If nl
>=n2, an error is reported. If nl is negative, it is
set to the beginning of the experinent. If n2is
greater than the maxi rumrecorded, it is set to the
maximum If nlis onitted, zero is assuned.

- h[ eavy] Reports the npbst heavily used lines in descendi ng order
of use. This option can be used when generating
reports for ideal, pcsamp, or _hwc experinments. It is

ignored for other experinments.

-1 [ines] Perfornms |ike -h[eavy], but groups lines by procedure,
with procedures sorted in descending order of use.
Wthin a procedure, lines are listed in source order.
This option can be used when generating reports for
ideal, pcsamp, or _hwc experiments. It is ignored for
ot her experinents.

-u[ sage] Prints a report on systemstatistics.

-dsol i st List all the DSOs in the programand their start and end text
addr esses.

-calls Sorts function list by procedure calls rather than by
time. This option can only be used when generating
reports for ideal experiments or for basic block

counting data obtained with pixie.

-nh Suppress various header blocks fromthe output.

-g[uit] n or n%or ncunte
Truncates the -h[eavy], -I[ines], and -b[utterfly]
listings after the first n lines have been |isted,
after those lines up to the one which takes nore than n
percent of the total, or after those lines up to the
one that brings the cumulative total to more than n
percent. For exanple, -q 15 truncates each part of the
listing after 15 lines of text, -q 15%truncates each
part after the first line that represents less than 15
percent of the whole, and -q 15cun® truncates each part
after the line that brought the cunul ative percentage
above 15 percent. For -b[utterfly], -q ncun? behaves
the same as -q n%

-clock megahertz
Sets the CPU clock speed to negahertz MHz. It alters
the appropriate parts of the listing to reflect the
clock speed. The default value is the clock speed of
the machi ne on which the experinent is perforned.

o Output Format
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prof writes an analysis of the performance data to stdout

asummary of the experiment and description of the environment in which it was recorded
aheader that summarizes the particular data recorded

function list

oooo

For all experiments, it produces alist of functions, annotated with the appropriate metric.

[Experiment Type |[Function List Annotation |

[usertime |[exclusivetime
[totaltime |[exclusivetime
[[fTpcsamplx] |[exclusivetime

_hwc experiments |[exclusive counts
_hwctime experiments[exclusivetime
[fpe |[exclusive FPEs
[io |[exclusive 10 calls

|
|
|
[ideal |[exclusiveided time |
|
|
|
|

o butterfly function list
If the -b[utterfly] flag is added, alist of callers and callees of each function is also produced.
o linelist

If the -h[eavy] or -I[ines] options are included for pcsamp, _hwe, and ideal experiments, areport of data at the source line level is appended. The report is sorted either

by the performance metric computed on aline basis, or by functions and then by line numbers within afunction. For other experiments, these options are ignored.
o basicblock list

For ideal experiments only, if -basicblocks is specified, areport of data at the basic-block level is appended. If -archinfo is specified, also for ideal experimentsonly, a
summary report of register usage, instruction usage, and various other statisticsis appended. For other experiments, these options are ignored.

O dsolist
If -dsolist is specified, alist of the DSOs used by the program is appended.
O resource usage data
If -u[sage] is specified, asummary of the resources used by the program is appended.
o Example: prof -b -q 8 -dsolist L2_cache_trash.usertime.m754877

SpeedShop profile listing generated Tue Jan 30 16:21:03 2001
prof -b -q 8 -dsolist L2_cache_trash. usertine. n754877
L2_cache_trash (n32): Target program
usertine: Experinent nanme
ut:cu: Marching orders
R10000 / R10010: CPU/ FPU
64: Nunber of CPUs
250: O ock frequency (Miz.)
Experinent notes--
Fromfile L2_cache_trash. usertine. n754877:
Cal i per point 0 at target begin, PID 754877
/ hb/ schang/ OPTI M ZATI ON/ di r. ssrun/ L2_cache_trash
Cal i per point 1 at exit(0)
Sunmary of statistical callstack sanpling data (usertine)--
97: Total Sanmples
0: Samples with incomplete traceback
2.910: Accunul ated Time (secs.)
30.0: Sample interval (msecs.)

Function list, in descending order by exclusive time
[index] excl.secs excl.% cum% incl.secs incl.% sanples procedure (dso: file, line)
[1] 2.550 87.6% 87.6% 2.910 100. 0% 97 12_cache_trashing (L2_cache_trash: L2_cache_trash.f, 1)
[4] 0.300 10.3% 97.9% 0.300 10.3% 10 _RANF_4 (libfortran.so: randomc, 154)
[6] 0.030 1.0% 99.0% 0.030 1.0% 1 _xstat (libc.so.1: xstat.s, 12)
[71 0.030 1.0% 100.0% 0.030 1.0% 1 __wite (libc.so.1: wite.s, 20)
[2] 0. 000 0.0% 100. 0% 2.910 100. 0% 97 __start (L2_cache_trash: crtiltext.s, 103)
[3] 0.000 0.0% 100.0% 2.910 100. 0% 97 main (libftn.so: main.c, 76)
[5] 0.000 0.0% 100.0% 0.060 2.1% 2 _FW (libfortran.so: wu90.c, 47)
[8] 0.000 0.0% 100.0% 0.030 1.0% 1 _ll_inplicit_open (libfortran.so: inpopen.c, 42)
Butterfly function list, in descending order by inclusive time
attrib.%attrib.tine incl.time caller (callsite) [index]
[i ndex] incl.% incl.time self% self-time procedure [index]
attrib.%attrib.tine incl.time callee (callsite) [index]
100. 0% 2.910 2.910 nmain (@x0af99b20; libftn.so: main.c, 97) [3]
[1] 100. 0% 2.910 87. 6% 2.550 1 2_cache_trashing [1]
4.1% 0.120 0.300 _RANF_4 (@x100017a8; L2_cache_trash: L2_cache_trash.f, 10) [4]
3.1% 0. 090 0.300 _RANF_4 (@x10001878; L2_cache_trash: L2_cache_trash.f, 12) [4]
3.1% 0. 090 0.300 _RANF_4 (@x10001810; L2_cache_trash: L2_cache_trash.f, 11) [4]
2.1% 0. 060 0.060 _FWJ (@x1000lac4; L2_cache_trash: L2_cache_trash.f, 20) [5]
[2]  100.0% 2.910 __start [2]

main (@x10001738; L2_cache_trash: crtitext.s, 177) [3]

100. 0% 2.910 2.910 __start (@x10001738; L2_cache_trash: crtitext.s, 177) [2]
[3]  100.0% 2.910 0.0% 0.000 main [3]
100. 0% 2.910 2.910 |2_cache_trashing (@x0af99b20; libftn.so: main.c, 97) [1]
3.1% 0. 090 2.910 |2_cache_trashing (@x10001878; L2_cache_trash: L2_cache_trash.f, 12) [1]
3.1% 0. 090 2.910 |2_cache_trashing (@x10001810; L2_cache_trash: L2_cache_trash.f, 11) [1]
4.1% 0.120 2.910 |2_cache_trashing (@x100017a8; L2_cache_trash: L2_cache_trash.f, 10) [1]
[4] 10. 3% 0. 300 10. 3% 0. 300 _RANF_4 [4]
2.1% 0. 060 2.910 |2_cache_trashing (@x10001ac4; L2_cache_trash: L2_cache_trash.f, 20) [1]
[5] 2.1% 0. 060 0. 0% 0. 000 _FWU [ 5]
1. 0% 0. 030 0.030 _xfer_iolist (@x0a6el484; l|ibfortran.so: wi90.c, 183) [11]
1. 0% 0. 030 0.030 _II_inplicit_open (@x0a6el550; Ilibfortran.so: wiu90.c, 96) [8]
1. 0% 0. 030 0.030 _stat (@x0fa3d490; libc.so.1: stat.c, 32) [10]
[6] 1. 0% 0. 030 1.0% 0. 030 _xstat [6]
1.0% 0. 030 0.030 _wite (@xO0fa4fddc; libc.so.1: witeSCl.c, 29) [16]
[7 1. 0% 0.030 1.0% 0.030 _wite [7]
1. 0% 0. 030 0.060 _FWJ (@x0a6e1550; |ibfortran.so: wi90.c, 96) [5]
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[8] 1. 0% 0.030 0.0% 0. 000 _Il_inplicit_open [8]

low - high text addrs.,

DSO nane instrs. functions lines
L2_cache_trash 339 6 5 0 0x100015cc - 0x10001b18,
l'ibss.so 672 34 5 0 0x09db11f8 - 0x09dblc78,
libssrt.so 209976 2174 435 0 0x09e62fe8 - 0x09f300c8,
libfortran.so 300668 1501 502 0 0x0a6b3d98 - 0x0a7d9788,
libffio.so 117248 644 228 0 0x0a77d0d8 - OxOa7ef 8d8,
libftn.so 88249 1475 531 0 OxOaf 75c00 - OxOaf cbee4,
l'ibmso 48157 163 148 0 0x09fad4e8c - 0x09f d3f 00,
libc.so. 1 244378 2891 962 0 0x0fa372c4 - 0xOf b25d2c,

1. 0% 0. 030 0.030 _f_open (@x0a6c6elc; |ibfortran.so: inpopen.c, 85) [9]

DSO pat hnane

L2_cache_trash

/usr/1ib32/1ibss.so

lusr/1ib32/1ibssrt.so [ignored]

/ opt/M PSpro/ M PSpro/usr/|ib32/ mps4/libfortran. so
/ opt/M PSpro/ M PSpro/ usr/|ib32/mps4/libffio.so

/ opt/M PSpro/ M PSpro/usr/lib32/ mps4/libftn.so

/ opt/M PSpro/ M PSpro/usr/|ib32/m ps4/1ibmso
Jusr/1ib32/1ibc.so.1

Example: prof -I L2_cache_trash.fpcsamp.m755026

o

SpeedShop profile listing generated Fri Jan 26 14:58:10 2001
prof -1 L2_cache_trash. fpcsanp. n755026
L2_cache_trash (n32): Target program
fpcsanp: Experinment nane
pc, 2, 1000, 0: cu: Marching orders
R10000 / R10010: CPU / FPU
64: Nurmber of CPUs
250: Cock frequency (Mz.)
Experi nent notes--
From file L2_cache_trash. f pcsanp. n755026:
Caliper point O at target begin, PID 755026
/' hb/ schang/ OPTI M ZATI ON/ di r. ssrun/ L2_cache_trash
Cal i per point 1 at exit(0)
Summary of statistical PC sanpling data (fpcsanp)--
2922: Total sanples
2.922: Accunul ated time (secs.)
1.0: Time per sanple (msecs.)
2: Sanple bin width (bytes)

Function list, in descending order by time
[i ndex] secs % cum % sanples function (dso: file, line)

[1 2.451 83.9% 83.9% 2451 | 2_cache_trashing (L2_cache_trash: L2_cache_trash.f, 1)

[2] 0.370 12.7% 96.5% 370 _RANF_4 (libfortran.so: randomc, 154

[3] 0. 090 3.1% 99.6% 90 __wite (libc.so.1: wite.s, 20)

[4] 0.010  0.3% 100. 0% 10 _ftruncate (libc.so.1: ftruncate.s, 16)

[5] 0. 001 0. 0% 100. 0% 1 _lae_get_assign_file_name (libffio.so: asnenv.c, 606)

2.922 100. 0% 100. 0% 2922 TOTAL
Line list, in descending order by function-time and then line number
secs % cum% sanples function (dso: file, line)

0.051 1.7 1.7 51 |2_cache_trashing (L2_cache_trash: L2_cache_trash.f, 10)
0. 020 0.7 2.4 20 12_cache_trashing (L2_cache_trash: L2_cache_trash.f, 11)
0.041 1.4 3.8 41 | 2_cache_trashing (L2_cache_trash: L2_cache_trash.f, 12)
2.339 80. 0 83.9 2339 12_cache_trashing (L2_cache_trash: L2_cache_trash.f, 16)
0.035 1.2 851 35 _RANF_ 4 (libfortran.so: randomc, 154)
0.191 6.5 91.6 191 _RANF_4 (libfortran.so: randomc, 158)
0.144 4.9 96.5 144 | 4 (libfortran.so: randomc, 160)
0. 090 3.1 99.6 90 __wite (libc.so.1: wite.s, 20)
0.010 0.3 100.0 10 _ftruncate (libc.so.1: ftruncate.s, 16)
0. 001 0.0 100.0 1 _lae_get_assign_file_name (libffio.so: asnenv.c, 672)

o Example: prof -h L2_cache_trash.fpcsamp.m755026
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SpeedShop profile listing generated Fri Jan 26 17:53:03 2001
prof -h L2_cache_trash. f pcsanp. n¥55026
L2_cache_trash (n32): Target program
fpcsanp: Experinment name
pc, 2, 1000, 0: cu: Marching orders
R10000 / R10010: CPU / FPU
64: Nurmber of CPUs
250: O ock frequency (Miz.)
Experinent notes--
From file L2_cache_trash. f pcsanp. n755026:
Cal i per point O at target begin, PID 755026
/' hb/ schang/ OPTI M ZATI ON/ di r. ssrun/ L2_cache_trash
Cal i per point 1 at exit(0)
Summary of statistical PC sanpling data (fpcsanp)--
2922: Total samples
2.922: Accunul ated time (secs.)
1.0: Time per sanple (msecs.)
2: Sanmple bin width (bytes)
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Function list, in descending order by time
[i ndex] secs % cum % sanples function (dso: file, line)
[1] 2.451 83.9% 83.9% 2451 |2_cache_trashing (L2_cache_trash: L2_cache_trash.f, 1)
[2] 0.370 12.7% 96.5% 370 _RANF_4 (libfortran.so: randomc, 154)
[3] 0.090 3.1% 99.6% 90 _“wite (libc.so.1: wite.s, 20)
[4] 0.010 0. 3% 100. 0% 10 _ftruncate (libc.so.1: ftruncate.s, 16)
[5] 0. 001 0. 0% 100. 0% 1 _lae_get_assign_file_name (libffio.so: asnenv.c, 606)
2.922 100. 0% 100. 0% 2922 TOTAL
Line list, in descending order by time
secs % cum% sanples function (dso: file, line)
2.339 80.0 80.0 2339 | 2_cache_trashing (L2_cache_trash: L2_cache_trash.f, 16)
0.191 6.5 86.6 191 _RANF_4 (libfortran.so: randomc, 158)
0.144 4.9 91.5 144 _RANF_4 (libfortran.s random c, 160)
0. 090 3.1 94.6 90 _wite (libc.so.1: wite.s, 20)
0. 051 1.7 96. 3 51 12_cache_trashing (L2_cache_trash: L2_cache_trash.f, 10)
0.041 1.4 97.7 41 12_cache_trashing (L2_cache_trash: L2_cache_trash.f, 12)
0.035 1.2 98.9 35 _RANF_4 (libfortran.so: randomc, 154)
0. 020 0.7 99.6 20 12_cache_trashing (L2_cache_trash: L2_cache_trash.f, 11)
0.010 0.3 100.0 10 _ftruncate (libc.so.1: ftruncate.s, 16)
0. 001 0.0 100.0 1 _lae_get_assign_file_name (libffio.so: asnenv.c, 672)
Example: prof -b -basichlocks-q 8 L2_cache_trash.ideal.m1838173
SpeedShop profile listing generated Tue Jan 30 13:32:42 2001
prof -b -basicblocks -q 8 L2 cache_trash.ideal . n838173
L2_cache_trash (n32): Target program
ideal : Experinent nanme
it:cu: Marching orders
R10000 / R10010: CPU/ FPU
64: Number of CPUs
250: O ock frequency (Miz.)
Experi nent notes--
Fromfile L2_cache_trash.ideal . nm838173:
Cal i per point O at target begin, PID 1838173
L2_cache_trash
Caliper point 1 at exit(0)
Summary of ideal time data (ideal)--
162717775: Total number of instructions executed
207314320: Total computed cycles
0.829: Total computed execution time (secs.)
1.274: Average cycles / instruction
Function list, in descending order by exclusive ideal time
[i ndex] excl . secs excl . % cum % cycles instructions incl.secs incl.% calls function (dso: file, line)
[3] 0.478 57.7% 57. 7% 119572538 115374161 0.818  98.7% 1 12_cache_trashing (L2_cache_trash: L2_cache_trash.f, 1)
[4] 0. 340 41. 0% 98. 6% 84934656 44040192 0. 340 41.0% 3145728 _RANF_4 (libfortran.so: randomc, 154)
[9] 0. 004 0.5% 99. 1% 1019750 1009821 0. 005 0.7% 3110 general _find_synbol (rld: rid.c, 2038)
[10] 0.002 0.2% 99. 4% 466070 535207 0. 002 0.3% 6074 resolve_relocations (rld: rid.c, 2636)
[12] 0.001 0.1% 99. 5% 266235 335241 0.001 0.1% 3124 elfhash (rld: obj.c, 1184)
[13] 0.001 0.1% 99. 6% 141808 203673 0.001 0.1% 8863 obj _dynsymgot (rld: objfcn.c, 46)
[8] 0.001 0.1% 99. 6% 139493 176748 0. 006 0.7% 3065 resolve_synbol (rld: rld.c, 1828)
[71 0.001 0.1% 99. 7% 136156 176862 0. 008 0.9% 3110 resolving (rlid: rid.c, 1499)
Butterfly function list, in descending order by inclusive ideal time

attrib.%attrib.tinme(#calls) incl.tine caller (callsite) [index]
[i ndex] incl.% incl.tine self% self-tine procedure [index]
attrib.%attrib.tinme(#calls) incl.time callee (callsite) [index]
[1] 98. 7% 0.818 0.0% 0.000 __start [1]
98. 7% 0. 818(0000001) 0.818 main [2]
0. 0% 0. 000(0000001) 0.000 __readenv_sigf pe [316]
0.0% 0. 000(0000001) 0.000 __istart [320]
98. 7% 0. 818( 0000001) 0.818 _ start [1]
[2] 98. 7% 0.818 0.0% 0. 000 main [2]
98. 7% 0. 818(0000001) 0.818 12_cache_trashing [3]
0.0% 0. 000( 0000005) 0.000 signal [146]
98. 7% 0. 818( 0000001) 0.818 main [2]
[3] 98. 7% 0.818  57.7% 0.478 12_cache_trashing [3]
41. 0% 0.340(3145728) 0.340 _RANF_4 [4]
0.0% 0. 000(0000001) 0.000 _FWJ [42]
0. 0% 0. 000( 0000001) 0.000 _F90_STOP [113]
41. 0% 0.340(3145728) 0.818 12_cache_trashing [3]
[4] 41. 0% 0. 340 41. 0% 0. 340 _RANF_4 [4]
[5] 1.2% 0.010 0. 0% 0. 0! handl e_undefi neds [5]
1. 0% 0. 008(0000008) 0.008 search_for_externals [6]
0.2% 0. 001(0000003) 0.001 fix_all_defineds [11]
0. 0% 0. 000(0000001) 0.000 search_for_undefineds [93]
1.0% 0. 008(0000008) 0.010 handl e_undefi neds [5]
6] 1. 0% 0. 008 0. 0% 0. 000 search_for_externals [6]
0.9% 0. 008(0003109) 0.008 resolving [7]
0. 0% 0. 000(0000452) 0.000 do_relocations_and_check_rel oc_on_stub [17]
0.0% 0. 000( 0000467) 0.001 obj _dynsym got [13]
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0.0% 0. 000( 0000001) 0.000 search_for_undefineds [93]
0.9% 0.008(0003109) 0.008 search_for_externals [6]
7 0.9% 0. 008 0.1% 0.001 resolving [7]
0.7% 0. 006(0003026) 0.006 resol ve_synbol [8]
0.1% 0.001(0003110) 0.002 resolve_relocations [10]
0.0% 0.000(0003110) 0.000 obj_set_dynsym got [18]
0. 0% 0. 000(0000096) 0.000 comon_handling [51]
0. 0% 0. 000(0000024) 0.000 get_symib_table_entry [178]
0.0% 0. 000(0000024) 0.000 is_optional _synbol [187]
0.0% 0. 000( 0000010) 0.000 _rld_name_to_address [68]
0. 0% 0. 000(0000029) 0.000 lazy_text_resolve [38]
0.7% 0. 006(0003026) 0.008 resolving [7]
[8] 0.7% 0. 006 0.1% 0.001 resol ve_synbol [8]
0. 6% 0. 005(0003062) 0.005 general _find_synbol [9]
0.0% 0. 000( 0000008) 0.000 conmon_handling [51]
0.0% 0. 000( 0000003) 0.000 strcnp [14]
Basic block list, in descending order by total cycles
index cyc./cnt. counts total cycles % function (address; dso: file, line)
0 27 3145728 84934656 41.0% _RANF_4 (@x0a7132d0; libfortran.so: randomc, 154)
1 57 1048576 59768832 28.8% |2_cache_trashing (@x100018e4; L2_cache_trash: L2_cache_trash.
2 14 1048576 14680064 7.1% 12_cache_trashing (@x100017b0; L2_cache_trash: L2_cache_trash.
3 14 1048576 14680064 7.1% 12_cache_trashing (@x10001818; L2_cache_trash: L2_cache_trash.
4 14 1048576 14680064 7.1% |2_cache_trashing (@x10001880; L2_cache_trash: L2_cache_trash.
5 5 1048576 5242880 2.5% 12_cache_trashing (@x10001874; L2_cache_trash: L2_cache_trash.
6 5 1048576 5242880 2.5% | 2_cache_trashing (@x1000180c; L2_cache_trash: L2_cache_trash.
7 5 1048576 5242880 2.5% 12_cache_trashing (@x100017a4; L2_cache_trash: L2_cache_trash.
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o

Example: prof - L2_cache_trash.dsc_hwc.m1225967

SpeedShop profile listing generated Fri Jan 26 14:46:26 2001
prof -1 |omax.L2_cache_trash.dsc_hwc. nl225967
L2_cache_trash (n32): Target program
dsc_hwc: Experinment nanme
hwe, 26, 131: cu: Marching orders
R8000 / Unknown chip: CPU/ FPU
0: Number of CPUs
250: Cock frequency (M.)
Experi nent notes--
From file |onmax.L2_cache_trash. dsc_hwc. m225967:
Cal i per point O at target begin, PID 1225967
L2_cache_trash
Cal i per point 1 at exit(0)
Summary of perf. counter overflow PC sanpling data (dsc_hwc)--
31759: Total sanples
Secondary cache D mi sses (26): Counter name (number)
131: Counter overflow val ue
4160429: Total counts

Function list, in descending order by counts
[i ndex] counts % cum% sanples function (dso: file, line)
[1] 4159250 100. 0% 100. 0% 31750 12_cache_trashing (L2_cache_trash: L2_cache_trash.f, 1)
[2] 131 0. 0% 100. 0% 1 _ns_lookup (libc.so.1: ns_|lookup.c, 30)
[3] 131 0. 0% 100. 0% 1 nmemset (libc.so.1: bzero.s, 98)
[4] 131 0.0% 100. 0% 1 __filbuf (libc.so.1: _filbuf.c, 27)
[5] 131 0. 0% 100. 0% 1 _unit_close (libfortran.so: unitclose.c, 53)
655 0. 0% 100. 0% 5 **OTHER** (includes excluded DSGCs, rld, etc.)

4160429 100. 0% 100. 0% 31759 TOTAL

Line list, in descending order by function-time and then |ine number

counts % cum% sanples function (ds file, line)

131 0.0 0.0 1 12_cache_trashing (L2_cache_trash: L2_cache_trash.f, 11)
131 0.0 0.0 1 12_cache_trashing (L2_cache_trash: L2_cache_trash.f, 12)

4158988 100.0 100.0 31748 12_cache_trashing (L2_cache_trash: L2_cache_trash.f,
131 0.0 100.0 1 __filbuf (libc.so.1: _filbuf.c, 39)
131 0.0 100.0 1 _ns_lookup (libc.so.1: ns_|ookup.c, 45)
131 0.0 100.0 1 nmemset (libc.so.1: bzero.s, 133)
131 0.0 100.0 1 _unit_close (libfortran.so: unitclose.c, 138)

16)

o Example: Tracesfloating point execptions

When the following program is compiled with default,i.e., f90 -o fpe fpe.f, array ais of type real*4. Thus the allowed range of (i) is approximately -10**(-38).LE.10**(38) on
IRIX systems. In the following example, a(37)-a(100) are reported to be infinity in the output and thus the opertion in this program caused floating point execption 64 times.

ssrun -fpe reports 65 (?) counts of FPEs.
Sample program : fpe.f

program f pe

di mensi on a(100)
b=0.1

do i=1, 100
b=b*0.1

a(i)=1.0/b
end do

wite (6,*) a

stop
end

prof floating_point_exe.fpe.m2688278

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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Experi nent notes--

250:

SpeedShop profile listing generated Tue Feb 6 10:52:23 2001
prof floating_point_exe.fpe.
floating_point_exe (n32):

f pe:

fpe: cu:

R10000 / R10010:

64:

2688278

Target program
Experinent nanme

Mar ching orders

CPU / FPU

Nunber of CPUs

Clock frequency (Mz.)

Fromfile floating_point_exe.fpe. n2688278:
Caliper point O at target begin, PlID 2688278
/'scrat chl/ schang/ OPTI M ZATI ON/di r. ssrun/ f | oat i ng_poi nt _exe
Cal i per point 1 at exit(0)
Summary of FPE callstack tracing data (fpe)--
65: Total FPEs
0: Sanples with inconplete traceback

Function list, in descending order by exclusive FPEs

[i ndex] excl . FPEs excl.% cum % file, line)
[1 65 100.0% 100.0% 65 100.0% fpe (floating_point_exe: fpe.f
[2] 0 0.0% 100.0% 65 100.0% __start (floating_point_exe: crtltext.s,
[3] 0 0.0% 100. 0% 65 100.0% nmain (libftn.so: main.c, 76)

10

1)
3)

o pixie

o Pixieisatool used to measure executation frequency of each basic block in aprogram

o Itisnormally invoked from ssrun with the -ideal option. See PBS script for ssrun and ssrun -ideal examplesto learn how to do this.

o It can be directly invoked by a user without ssrun.
o Command
pixie executable_name [pixie-options]
Only two of these options are described here. Please refer to pixie man page for acomplete listing.
-pixie_file
Specify the nane of the pixiefied executable.
Defaul t: append ".pixie" (or an explicit suffix, as set by -suffix)
to the original nane.
-counts_file
Specify the nane to be used for the output .Counts file.
Defaul t: append ".Counts" to the original program nane.

Example: Use pixie directly to count the executation frequency of each basic block

nmodul e | oad SpeedShop.1.4 <--- This is currently required on Hopper

/bin/time pixie L2_cache_trash -pixie_file L2_cache_trash.pixie -counts_file L2_cache_trash. Counts

I/bin/time L2_cache_trash.pixie <--- This step generates the counts_file

Inthisexample, L2_cache trashisthe original executable, and L2_cache_trash.pixieisthe pixiefied executable to be generated by pixie. L2_cache trash.Countsisthe

chosen file name for the counts file. Thisfile won't be generated until the pixiefied executable isinvoked.
o Useprof to analyze pixie counts_fileand generateareport

Example: prof -b -basicblocks-q 8 L2_cache_trash.Counts > pixie.out

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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SpeedShop profile listing generated Tue Feb 6 12:53:32 2001
prof -b -basichlocks -q 8 L2_cache_trash. Counts
L2_cache_trash (n32): Target program
pi xi e-counts: Experiment name
pi xi e-counts: Marching orders
R10000 / R10010: CPU / FPU
64: Number of CPUs

Clock frequency (Miz.)

Summary of ideal time data (pixie-counts)--
162404649: Total nunber of instructions executed
: Total conputed cycles
Total conputed execution time (secs.)
Average cycles / instruction

Function list, in descending order by exclusive ideal tine

[i ndex] excl . secs excl . % cum % cycles instructions incl.secs incl.% calls function (dso: file, line)
ANF 4 (libfortran.so: randomc, 154)
[9] 0.0 0. 4% 99. 2% 840687 830150 0. 005 0.6% 3084 general _find_synmbol (rld: rld.c, 2038)
[10] 0. 002 0.2% 99. 4% 464987 533835 0. 002 0.3% 6039 resolve_relocations (rld: rld.c, 2636)
[12] 0.001 0.1% 99. 5% 262250 330258 0. 001 0.1% 3089 elfhash (rld: obj.c, 1184)
[13] 0.001 0.1% 99. 6% 140800 202224 0.001 0.1% 8800 obj _dynsymgot (rld: objfcn.c, 46)
[8] 0.001 0.1% 99. 7% 138415 175368 0. 005 0.6% 3038 resolve_synbol (rld: rld.c, 1828)
[7] 0.001 0.1% 99. 7% 135452 175950 0. 007 0.9% 3094 resolving (rld: rld.c, 1499)
Butterfly function list, in descending order by inclusive ideal tine
attrib.%attrib.tine(#calls) incl.time caller (callsite) [index]
[i ndex] incl.% incl.tine self% self-tine procedure [index]
attrib.%attrib.tine(#calls) incl.time callee (callsite) [index]
[1] 98. 8% 0.818 0.0% 0.000 __start [1]
98. 8% 0. 818(0000001) 0.818 main [2]
0. 0% 0. 000(0000001) 0.000 __readenv_sigf pe [286]
0.0% 0. 000( 0000001) 0.000 __istart [289]
98. 8% 0. 818(0000001) 0.818 _ start [1]
[2] 98. 8% 0.818 0.0% 0. 000 main [2]
98. 8% 0. 818(0000001) 0.818 12_cache_trashing [3]
0.0% 0. 000( 0000005) 0.000 signal [118]
98. 8% 0. 818(0000001) 0.818 main [2]
[3] 98. 8% 0.818  57.8% 0.478 | 2_cache_trashing [3]
41, 0% 0.340(3145728) 0.340 _RANF_4 [4]
0.0% 0. 000( 0000001) 0.000 _FWJ [32]
0.0% 0. 000( 0000001) 0.000 _F90_STCP [92]

340(3145728) 0.818 |2_cache_trashing [3]

41. 0% 0.
[4] 41. 0% 0. 340 41. 0% 0.340 _RANF_4 [4]
[5] 1.1% 0. 009 0. 0% 0. 000 handl e_undefi neds [5]
0.9% 0. 008(0000006) 0.008 search_for_externals [6]
0.2% 0.001(0000003) 0.001 fix_all_defineds [11]
0. 0% 0. 000(0000001) 0.000 search_for_undefineds [77]
0.9% 0. 008(0000006) 0.009 handl e_undefineds [5]
[ 6] 0.9% 0. 008 0. 0% 0. 000 search_for_externals [6]
0.9% 0.007(0003093) 0.007 resolving [7]
0. 0% 0. 000(0000433) 0.000 do_relocations_and_check_rel oc_on_stub [16]
0.0% 0. 000( 0000438) 0.001 obj_dynsym got [13]
0. 0% 0. 000(0000001) 0.000 search_for_undefineds [77]
0.9% 0.007(0003093) 0.008 search_for_externals [6]
[7] 0.9% 0. 007 0.1% 0.001 resolving [7]
0.6% 0. 005( 0003010) 0.005 resol ve_synmbol [8]
0.1% 0.001(0003094) 0.002 resolve_relocations [10]
0. 0% 0. 000(0003094) 0.000 obj_set_dynsymgot [15]
0.0% 0. 000( 0000096) 0.000 conmmon_handling [40]
0. 0% 0. 000(0000024) 0.000 get_syniib_table_entry [154]
0.0% 0. 000( 0000024) 0.000 is_optional _synbol [164]
0. 0% 0. 000(0000001) 0.000 _rld_nane_to_address [123]
0. 0% 0. 000(0000027) 0.000 lazy_text_resolve [30]
0.6% 0. 005( 0003010) 0.007 resolving [7]
[8] 0.6% 0. 005 0.1% 0. 001 resol ve_synbol [8]
0.6% 0. 005(0003036) 0.005 general _find_synbol [9]
0. 0% 0. 000( 0000005) 0.000 common_handling [40]
0.0% 0. 000(0000002) 0.000 strcnp [14]
Basic block list, in descending order by total cycles
index cyc./cnt. counts total cycles % function (address; dso: file, line)
0 27 3145728 84934656 41.0% _RANF_4 (@x0a7132d0; libfortran.so: randomc, 154)
1 57 1048576 59768832 28.9% |2_cache_trashing (@x100018e4; L2_cache_trash: L2_cache_trash.f, 16)
2 14 1048576 14680064 7.1% |2_cache_trashing (@x10001818; L2_cache_trash: L2_cache_trash.f, 11)
3 14 1048576 14680064  7.1% |2_cache_trashing (@x10001880; L2_cache_trash: L2_cache_trash.f, 12)
4 14 1048576 14680064 7.1% | 2_cache_trashing (@x100017b0; L2_cache_trash: L2_cache_trash.f, 10)
5 5 1048576 5242880 2.5% |2_cache_trashing (@x100017a4; L2_cache_trash: L2_cache_trash.f, 10)
6 5 1048576 5242880 2.5% |2_cache_trashing (@x1000180c; L2_cache_trash: L2_cache_trash.f, 11)
7 5 1048576 5242880 2.5% |2_cache_trashing (@x10001874; L2_cache_trash: L2_cache_trash.f, 12)

Note: Thisoutput isalmost identical to that one produced by the ssrun -ideal. The main differences occur in the header and summary sections as
highlighted with blue color.

How to Proceed

o Measurethe Time Performance of the Entire Code
o /bintime
o /bintimex
o /bin/ssusage

e Find Out the Sections/Routinesthat Usethe Most Time
o ssrun -pcsamp aout : sampling the address of instruction 10 mstimer
o ssrun -fpesamp aout @ 1 mstimer
o ssrun -usertime a.out : sampling the call stack 30 mstimer
o insert dtime, etime, second or timef functionsin source code

The output generated by ssrun can be analyzed with prof. Use the-I or -h to find the most heavily used line and use -b if you want to know the caller and callee.

o Find Out How Many Times Each Routineis Called and If |ts Performance is Optimal

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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o ssrun -ideal aout
o pixieaout
Both are based on 'basic block' profiling. They give exact count of the number of times each basic block in the program is entered during arun.
The output generated by ssrun or pixie can be analyzed with prof. Use the-| or -h to find the most heavily used line and use -b if you want to know the caller and callee.

If the ideal time reported by prof for afunction is much smaller than the those from -usertime or -[f]pcsamp, then the performance is not optimal for this function. This function thusis a potential
target to be optimized.

e Find Out What Causesthe Entire Code not to Perform Well
o perfex -a-x -y aout

It provides information regarding which events take more clock-cycles than others. However, it does not provide information regarding which sections/routines of the code are causing the large
clock-cycles for those events.

e For a Specific Hardwar e Performance Counter, Find Out Which Routines Contribute the M ost

o ssrun*_hwc a.out

| Experiment_Type " Description |

| -gi_hwc and -fgi_hwc " graduated instruction; functions that burn alot of instructions |

| -cy_hwe and -fcy_hwe " elapsed cycles; functions with cache misses and mispredicted branches |

| -ic_hwe and -fic_hwe || code (instruction) that does not fit in L 1 cache |

| isc_hwe and fisc_hwe || code (instruction) that does not fit in L2 cache

| -dc_hwc and -fdc_hwe " code that causes L 1 data cache misses

| -tlb_hwe and -ftlb_hwc " code that cuase TLB misses

|
|
| -dsc_hwe and -fdsc_hwe " code that causes L 2 data cache misses |
|
|

| -gfp_hwe and -fgfp_hwe " code that performs heavy FP calculation

o insert libperfex callsin selected routines of source code

SINGLE-CPU OPTIMIZATION TECHNIQUES

Sour ces of Performance Problems

e CPU-bound processes
o Performing many slow operations such as sart, fp divides
o Non-pipelined operations: switching between adds and mults

o Memory-bound processes
o Poor memory strides
o Pagethrashing
o Cache misses

e 1/0 bound processes
o Performing synchronous 1/0
o Performing formatted I/O
o Library and system level buffering

Useful Techniques
o Replace Division by Multiplication

Division takes more clockcycles than multiplication. In this example, the performances of division versus multiplication are compared using dtime. The program is compiled with default, i.e., f90
-od_to_md_to_m.f

Sample program : d_to_m.f

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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programd_to_m

! This program denonstrates the better perfornance by
! using multiplication than division

di mensi on a(2000, 2000) , b( 2000, 2000)
real *4 dtine, tarray(2)

pi =3.14159
pinv=1./3.14159

! Division
t1=dti me(tarray)

do iteration=1, 10

do j =1, 2000

do i=1, 2000
a(i,j)=float(i+j)/pi
end do

end do

end do

t2=dti me(tarray)

wite (6,*) '"time spent using division ="', ,t2
! Multiplication

t1=dtime(tarray)

do iteration=1, 10

do j=1,2000

do i=1, 2000
b(i,j)=float(i+j)*pinv
end do

end do

end do

t2=dti me(tarray)

wite (6,*) "time spent using multiplication =", t2

wite (12) a
wite (12) b

stop
end

Output (hopper, R10000, 250M Hz)

5.64292097
4.30546093

tinme spent using division
time spent using mul tiplication

Performance Profiling and Optimization

e Increase Page Sizeto Reduce TLB Missand Page Fault
Default and allowed page sizes on NAS machines:

[Page Size|[Hopper |[Steger |[Lomax |
[16KB__ o | defaut cefat |
ey Jos Jys |

[MEB o Jo Jyes |
Increase page size with:

% dplace -data_pagesize 1M -stack_pagesize 1M a.out
Example: Increasing Performance with Larger Page Size

Sample program : tlb.f

programtlb

a(i,j,k) and a(i,j,k+1l) are (1024*100*4B) 400KB apart .
a(i,j,k) and b(i,j,k) are ~40MB apart.
If the page size is 16KB,

Accessing these arrays along the outnost direction k causes
TLB having to update pages continuously.

di mensi on a(1024, 100, 100) , b( 1024, 100, 100), c( 1024, 100, 100)
@ , d(1024, 100, 100) , e( 1024, 100, 100) , f ( 1024, 100, 100)
@ - 9(1024, 100, 100) , h( 1024, 100, 100) , p( 1024, 100, 100)
@ , (1024, 100, 100) , r (1024, 100, 100) , s( 1024, 100, 100)

do i=1, 1024

do j =1, 100

do k=1, 100

a(i,j,k)=float(i+ +k)
b(i.j,k)=2.0%float (i-j+k)
c(i,j,k)y=a(i,j,k)*b(i,j,k)

d(i, g, k)y=c(i,j,k)*a(i,j, k)
e(i,j,k)=amax0(i,j, k)

f(i g, ky=e(i,j, k)y*d(i,j, k)
g(i,j,k)=log(float(i++k))

n(iL k) =g(i . )+ (i k)

p(i g, k)y=g(i,j,k)-f(i,j, k)
q(i,j,k)y=a(i,j,k)+b(i,j,k)+h(i,j,k)
r(i g, k)y=c(i,j,ky+d(i,j, k) -e(i,j, k)
s(i,j,k)y=h(i,j,k)-a(i,j,k)

end do

end do

end do

stop
end

a(i,j,k) and a(i,j,k+1) are 25 (virtual) pages away from each other.
a(i,j,k) and b(i,j,k) are ~ 2500 (virtual) pages away from each other.
Thus, a(i,j,k), b(i,j,k), c(i,j,k) .. are all on different pages.

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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Compile and Execute on R12000 L omax

f90-otibtib.f

Perfex Output Using Default Page Size 16K

/bin/tine perfex -a -x -y tlb
WARNI NG Mul ti pl exi ng events to project totals--inaccuracy possible
Summary for execution of tlb
Based on 400 MHz | P27
M PS R12000 CPU
Typi cal M ni num Maxi num
Event Counter Name Counter Val ue Time (sec) Time (sec) Time (sec)
0 Cycles 35163735984 87. 909340 87. 909340 87. 909340
16 Executed prefetch instructions. 0 0. 000000 0. 000000 0. 000000
4 Mss handling table occupancy.... 26559242784 66. 398107 66. 398107 66. 398107
23 TLB M SSeS. . .t 174946720 34.018390 34.018390
26 Secondary data cache M SSES.......... ... ...t 123832880 30.924166 19.512966
7 Quadwords written back from scache 984426528 20. 894453 14.520291 21.583552
2 Decoded loads................. 2730838208 6. 827096 6. 827096 6. 827096
25 Primary data cache nmisses... 272815360 5.797326 1. 480023 5.797326
18 Graduated loads............... 1956728688 4.891822 4.891822 4.891822
22 Quadwords written back from primary data cache 247412768 2. 461757 1.942190 2. 461757
3 Decoded stores................. 319666496 0.799166 0.799166 0.799166
6 Resol ved conditional branches. 318546432 0. 796366 0. 796366 0. 796366
21 G aduated floating point instru 297206064 0. 743015 0. 371508 38.636788
24 Mspredicted branches......... 40145504 0. 730648 0. 602183 0. 884205
19 Graduated stores.............. 152505072 0.381263 0.381263 0.381263
9 Primary instruction cache misses.. 714320 0. 030376 0. 007750 0. 030376
10 Secondary instruction cache misses...............c..covuuu.un. 75248 0.018791 0.011857 0.018791
30 Store/prefetch exclusive to clean block in scache 3136 0. 000008 0. 000008 0. 000008
31 Store/prefetch exclusive to shared bl ock in scache 528 0. 000001 0. 000001 0. 000001
1 Decoded instructions 14183703344 0. 000000 0. 000000 35. 459258
5 Failed store conditionals..... 0 0. 000000 0. 000000 0. 000000
8 Correctabl e scache data array errors. . 0 0. 000000 0. 000000 0. 000000
11 Instruction msprediction fromscache way prediction table.. 23760 0. 000000 0. 000000 0. 000059
12 External interventions 22240 0. 000000 0. 000000 0. 000000
13 External invalidations... 631776 0. 000000 0. 000000 0. 000000
14 ALU FPU progress cycles..... 0 0. 000000 0. 000000 0. 000000
15 Graduated instructions...... 10792080496 0. 000000 0. 000000 26.980201
17 pPrefetch primary data cache nisses e 0 0. 000000 0. 000000 0. 000000
20 Graduated store conditionals........................ ... .. ... 0 0. 000000 0. 000000 0. 000000
27 Data misprediction fromscache way prediction table 595520 0. 000000 0. 000000 0.001489
28 State of intervention hits in scache... 22128 0. 000000 0. 000000 0. 000000
29 State of invalidation hits in scache... 36848 0. 000000 0. 000000 0. 000000
Statistics
Graduat ed instructions/cycle 0. 306909
Graduated floating point instructions/cycle 0. 008452
Graduated loads & stores/cycle............... 0. 059983
Graduated | oads & stores/floating point instruction. 7.096873
M spredicted branches/ Resol ved conditional branches. P 0. 126027
Graduat ed | oads /Decoded loads ( and prefetches )............ ... ... ... .... 0. 716530
G aduat ed stores/Decoded stores. . 0.477076
Data mispredict/Data scache hits. 0. 003997
Instruction nispredict/Instruction scache hits 0.037179
L1 Cache Line 6. 731360
L2 Cache Line 1. 203093
L1 Data Cache 0.870657
L2 Data Cache 0. 546093
Ti me accessing nenory/ Total tine.. 0. 864675
Ti me not neking progress (probably waiting on menory) / Total tine.. 1. 000000
L1--L2 bandwidth used (MB/s, average per process).. 144. 338427
Menory bandwi dth used (MB/s, average per process) 359. 477538
MFLOPS (average per process)................. 3.380825
Cache misses in flight per cycle (average)... 0. 755302
Prefetch cache miss rate........... ... . . i nanOx7fffffff
real 91.517
user 87.940
sys 3.181

34.018390
30. 924166

Perfex Output Using Page Size of IMB
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/b

in/time perfex -a -x -y dplace -data_pagesize 1M -stack_pagesize 1Mtlb

WARNI NG Mul tiplexing events to project totals--inaccuracy possible

Sunmary for execution of dplace -data_pagesize 1M -stack_pagesize 1Mtlb
Based on 400 Mz | P27
M PS R12000 CPU
Typi cal M ni num Maxi num
Event Counter Name Counter Val ue Time (sec) Time (sec) Time (sec)
0 OyCl @S, . 70. 239546 70. 239546 70. 239546
16 Executed prefetch instructions..... A 0. 000000 0. 000000 0. 000000
4 Mss handling table occupancy...... 80. 064703 80. 064703 80. 064703
26 Secondary data cache m sses.... 123657536 30.880378 19. 485336
7 Quadwords written back from scache. 983304912 20. 870647 14. 503747 21. 558960
23 TLB MiSS@S. ..ottt 41087280 7.989422 7.989422
25 Primary data cache misses. S 287254448 6.104157 1. 558355 6.104157
2 Decoded loads. ........ ... oot 1771502816 4. 428757 4. 428757 4. 428757
18 Graduated loads.............co it 1549964112 3. 874910 3. 874910 3. 874910
22 Quadwords written back fromprimry data cache.............. 246972096 2.457372 1.938731 2.457372
21 Gaduated floating point instructions....................... 296999248 0.742498 0. 371249 38. 609902
3 Decoded stores....................... e 219879392 0. 549698 0. 549698 0. 549698
19 Graduated StOres..................iiuniiinninin. 169628160 0. 424070 0. 424070 0. 424070
6 Resolved conditional branches............................... 150019136 0. 375048 0. 375048 0. 375048
24 Mspredicted branches............... ... ... .. .. ... .. ... 14791824 0.269211 0.221877 0.325790
10 Secondary instruction cache misses.......................... 73840 0. 018440 0. 011635 0. 018440
9 Primary instruction cache misses............................ 368592 0.015674 0. 003999 0.015674
30 Store/prefetch exclusive to clean block in scache. 1792 0. 000004 0. 000004 0. 000004
31 Store/prefetch exclusive to shared bl ock in scache. 304 0. 000001 0. 000001 0. 000001
1 Decoded instructions............................ 9803036800 0. 000000 0. 000000 24.507592
5 Failed store conditionals..................... ... ... 0. 000000 0. 000000 0. 000000
8 Correctable scache data array ECC errors.................... 0 0. 000000 0. 000000 0. 000000
11 Instruction msprediction fromscache way prediction table.. 29632 0. 000000 0. 000000 0. 000074
12 External interventions......................... ... .. ... 16096 0. 000000 0. 000000 0. 000000
13 External invalidations. 364560 0. 000000 0. 000000 0. 000000
14 ALU FPU progress cycles e . 0 0. 000000 0. 000000 0. 000000
15 Graduated instructions...... 8817825584 0. 000000 0. 000000 22.044564
17 Prefetch primary data cache nisses... 0 0. 000000 0. 000000 0. 000000
20 Graduated store conditionals 0. 000000 0. 000000 0. 000000
27 Data misprediction fromscache way prediction table......... 571008 0. 000000 0. 000000 0.001428
28 State of intervention hits in scache... 16096 0. 000000 0. 000000 0. 000000
29 State of invalidation hits in scache........................ 29280 0. 000000 0. 000000 0. 000000
Statistics
Graduated instructions/ CyCle. . ... . 0.313848
Graduated floating point instructions/cycle...... 0.010571
Graduated loads & stores/cycle................... 0. 061205
Graduated | oads & stores/floating point instruction 5.789888
M spredicted branches/ Resol ved conditional branches 0. 098600
Graduat ed | oads /Decoded | oads ( and prefetches ).. 0. 874943
G aduat ed stores/Decoded stores.................. 0. 771460
Data mispredict/Data scache hits 0. 003490
Instruction nispredict/Instruction scache hits... 0. 100532
L1 Cache Line . e . 4.986303
L2 Cache Line 1.322984
L1 Data Cache 0. 832952
L2 Data Cache 0. 569519
Time accessing nenory/Total tine 0.701499
Ti me not neking progress (probably waiting on rrEnDry) / Total tinme. 1. 000000
L1--L2 bandwi dth used (MB/s, average per process). 187.126720
Menory bandwi dth used (MB/s, average per process) 449. 334385
MFLOPS (average per proCessS)..................... 4.228377
Cache nisses in flight per cycle (average)....... . .. 1.139881
Prefetch cache miss rate......... ... ... i nanOx7fffffff
real 73.264
user 70.302 <-- improved from ~88 to 70 seconds
sys 2.677

30.880378

7.989422

e Interchange L oopsto Improve Cache Utilization

tlb.f shown above suffers tlb misses and secondary cache misses. By interchanging the loop order for operation such that the inner loop walks through the first index (i) of arraysinstead of the

last index (k) of the arrays reduces tIb misses and secondaray cache misses tremendously as demonstrated in the perfex output

Sample program : loop_interchange.f

program | oop_i nt er change
di mensi on a( 1024, 100, 100) , b( 1024, 100, 100) , c( 1024, 100, 100)
,d(1024, 100, 100) , e( 1024, 100, 100) , f (1024, 100, 100)
@ ,9(1024, 100, 100) , h( 1024, 100, 100) , p( 1024, 100, 100)
@ ,q(1024, 100, 100) , r (1024, 100, 100) , s( 1024, 100, 100)

this programis nodified fromtlb.f
changi ng | oop order to access array el enents along the inner nost
direction inproves performance since

a(i,j,k) and a(i+1,j,k) are only 4B apart, i.e., a stride-one access
Accessing a(i,j,k), b(i,j,k), c(i,j,k) will not cause bad performace
as long as the pages containing themare already available in TLB
do i=1,1024 lused in tlb.f
do j=1,100 lused in tlb.f
do k 1,100
, 100 lused in this program
1024 lused in this program

a(l,],k) =f 1 oat (i +j +k)
. 0*fl oat (i-j+k)
c(inj.k)=ali,j, k)*b(i\j, k)
d(i,j,ky=c(i,j, k)*a(i,j, k)
e(i,j, k) WBXO(IVJ‘k)
f(ij.k LK) *d(i,jL k)

g(i,j. k) og(float(-+J+k))
h(is g k) =g(i, j, k) + (0], k)
p(i g k) =g(i,j.K)-f(i,j, k)

q(i, g, k)y=a(i,j,k)y+b(i,j, k)+h(i,j, k)
r(i g, k)y=c(i,j, k)y+d(i,j, k)-e(i,j, k)
s(i,j,k)=h(i,j,k)-a(i,j, k)

end do

end do

end do

stop
end

perfex -a -x -y output (lomax)
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/bin/tinme perfex -a -x -y |oop_interchange
WARNI NG Mul ti pl exi ng events to project totals--inaccuracy possible
Summary for execution of |oop_interchange

Based on 400 Mz | P27
M PS R12000 CPU

real 16.476
user 12.724 <--- big improvement from ~87 seconds
sys

3.577

Typi cal M ni num Maxi num
Event Counter Name Counter Val ue Time (sec) Time (sec) Time (sec)

OCycles............ooviii.. 5102914448 12. 757286 12.757286 12. 757286

16 Executed prefetch instructions. 0 0. 000000 0. 000000 0. 000000
4 M ss handling table occupancy. 2981863952 7. 454660 7. 454660 7. 454660

25 Primary data cache nisses... 221214752 4.700813 1.200090 4.700813
2 Decoded | oads 1428923792 3.572309 3.572309 3.572309

18 G aduated | oads 1356947792 3. 392369 3. 392369 3. 392369

22 Quadwords written back fromprimry data cache 253272672 2.520063 1. 988190 2.520063

21 G aduated floating point instructions.. 293626704 0. 734067 0. 367033 38. 171472
3 Decoded stores 138934400 0. 347336 0. 347336 0. 347336

19 G aduated stores 133849120 0. 334623 0. 334623 0. 334623
6 Resol ved conditional branches. 49797040 0. 124493 0. 124493 0. 124493
9 Primary instruction cache mi sses. 346272 0. 014725 0. 003757 0. 014725

26 Secondary data cache m SSeS................ ..., 33328 0.008323 0.005252

23 TLB misses.................. Y 27376 0.005323 0.005323
7 Quadwords written back from scache 87392 0. 001855 0. 001289 0. 001916

24 Mspredicted branches............. 39216 0. 000714 0. 000588 0. 000864

10 Secondary instruction cache misses.. 1168 0. 000292 0. 000184 0. 000292

31 Store/prefetch exclusive to shared bl ock in scache 128 0. 000000 0. 000000 0. 000000

30 Store/prefetch exclusive to clean block in scache 32 0. 000000 0. 000000 0. 000000
1 Decoded instructions.......... 7419573696 0. 000000 0. 000000 18. 548934
5 Failed store conditionals 0 0. 000000 0. 000000 0. 000000
8 Correctabl e scache data array ECC errors. . 0 0. 000000 0. 000000 0. 000000

11 Instruction msprediction fromscache way prediction table.. 17392 0. 000000 0. 000000 0. 000043

12 External interventions 5760 0. 000000 0. 000000 0. 000000

13 External invalidations... 1160384 0. 000000 0. 000000 0. 000000

14 ALU FPU progress cycles..... 0 0. 000000 0. 000000 0. 000000

15 Graduated instructions........ 7128009536 0. 000000 0. 000000 17. 820024

17 Prefetch primary data cache nisses 0 0. 000000 0. 000000 0. 000000

20 Graduated store conditionals........ . 0 0. 000000 0. 000000 0. 000000

27 Data misprediction fromscache way prediction table.. 826560 0. 000000 0. 000000 0. 002066

28 State of intervention hits in scache. 5760 0. 000000 0. 000000 0. 000000

29 State of invalidation hits in scache... 10832 0. 000000 0. 000000 0. 000000

Statistics

Graduated instructions/cycle 1. 396851

Graduated floating point instructions/cycle 0. 057541

Graduated loads & stores/cycle............... 0.292146

Graduated | oads & stores/floating point instruction. 5.077184

M spredicted branches/ Resol ved conditional branches. 0. 000788

Graduat ed | oads /Decoded | oads ( and prefetches ).. 0. 949629

Graduat ed stores/Decoded stores. .. 0. 963398

Data mispredict/Data scache hits. 0. 003737

Instruction mspredict/Instruction scache hits 0. 050396

L1 Cache Line Reuse.......................... 5.739139

L2 Cache Line ReUSE......... .. ... ... 6636. 504561

L1 Data Cache Hit Rate 0.851613

L2 Data Cache Hit Rate............... ... s 0.999849

Time accessing nmenpry/Total time......... ... .. . 0. 661697

Time not making progress (probably waiting on menory) / Total tine.. 1. 000000

L1--L2 bandwi dth used (MB/s, average per process).. 872. 539403

Menory bandwi dth used (MB/s, average per process) 0. 444002

MFLOPS (average per process)..... 23.016392

Cache misses in flight per cycle (average). 0. 584345

Prefetch cache niss rate nanOx7fffffff

0.008323
0.005323

o Group Data Used at the Same Time to Reduce Traffic to Cache

If the access of array

three. Thiswill reduce traffic to the cache by afactor of three.

The following two programs, one wihtout grouping and the other with grouping, were compiled with, for example, f90 -0 index_no_group index_no_group.f -Iperfex. The performances of these
two programs were monitored using dtime and libperfex. The events, 0 and el, bein monitored with libperfex are chosen by user. Dimension of arrays x, y and z are also from input.

Sample program : index_no_group.f

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi

elements is not sequential, but indirect through an index array, index(i) as shown in the following example, it is not likely that the accesses are stride-one from iteration to
iteration. Thus each iteration of the loop may cause new cache lines (3 linesin the example) to be loaded. If for each value of j=index(i), x(j),y(j), and z(j) are always processed toget
grouping X(j),y(j), and z(j) together into r(3)), (), y(j) and z(j) will very likely fal in the same cache line. Then for each iteration, there could still be one cache line fetched, but only one, not
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program i ndex_no_group
integer e0,el

read (5,*) nmax
read (5,*) niteration
read (5,*) e0,el

wite (6,*) "dimension for array ="', nmax
wite (6,*) 'nunber of iteration ,niteration
wite (6,*) "Events nonitored : ", e0,el

call group(nnmax, niteration, e0, el)

stop
end

subroutine group(nnex, niteration, e0, el)
di nensi on i ndex( nmax)

di mensi on x(nmax), y(nmax), z( nmax)

real *4 dtine, tarray(2)

integer*8 c0, cil
i nteger e0, el

d=0.0
call random nunber (x)

call random nunber (y)
call random nunber(z)

do i=1, nmax
index(i)=int(x(i)*nmax)
end do

call start_counters(e0,el)

t1=dti me(tarray)

do iteration=1,niteration
do i =1, nnax
j=index(i)
d =d + (x(j)*x(i) + y(i)*y(i) + z(i)*z(i))
end do
end do

t2=dti me(tarray)

call read_counters(e0,c0,el,cl)
call print_counters(e0,c0,el,cl)
call print_costs(e0,c0,el,cl)

wite (6,*) d
wite (6,*) "time used for do loop = "',t2

return
end

Sample program : index_yes_group.f

Performance Profiling and Optimization

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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program i ndex_yes_group
integer e0,el

read (5,*) nnmax
read (5,*) niteration
read (5,*) e0,el

wite (6,*) 'dimension for array
wite (6,*) 'nunber of iteration
wite (6,*) "Events nonitored :

call group(nnmax, niteration, e0, el)

stop
end

subroutine group(nnex, niteration,

di nensi on i ndex( nmax)
di mensi on x(nmax), y(nmax), z( nmax)
real *4 dtine, tarray(2)

integer*8 c0, cil
i nteger e0, el

d=0.0

call random nunber (x)
call random nunber (y)
call random nunber(z)

do i=1, nmax
r(1,0)=x(i)
r(2,i (i)
r(3,i)=z(i)

end do

do i =1, nnax
index(i)=int(x(i)*nmax)
end do

call start_counters(e0,el)
t1=dti me(tarray)

do iteration=1,niteration
do i =1, nmax

j =i ndex(i)
! d =d + sq

t2=dti me(tarray)

call read_counters(e0,cO,el, cl)
call print_counters(e0,c0,el,cl)
call print_costs(e0,cO,el,cl)
wite (6,*) d

return
end

', nmax
‘,niteration

", e0,el

e0, el)

, (3, nmax)

wite (6,*) "time used for do loop = "',t2

Performances of the above two programs are compared for two different dimensions, 200,000 and 1,000,000. The events monitored are event O, event 23 in one run and event 0 and event 26 in

another run.

Performance of index_no_group.f on lomax (R12000, 400M Hz)

niteration = 10 in both runs nmax=100,000 || nmax=1,000,000
dtimein first run 0.156475 9.46948814

0 Cycles Counts 62,585,033 2,511,033,495
0 Cycles Typical Time 0.156463 6.277584

23 TLB misses Counts 250 26,994,065
23 TLB misses Typical Time 0.000049 5.248996
dtimein second run 0.156079993 9.30582333
0 Cycles Counts 62,447,728 2,446,463,929
0 Cycles Typical Time 0.156119 6.116160

26 Secondary Data Cache Misses Counts 12,719 9,629,030

26 Secondary Data Cache Misses Typical Time || 0.003176 2.404610

Performance of index_yes group.f (lomax, R12000, 400M Hz)

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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| niteration = 10 in both runs

|| nMax=100,000 || nmax=1,000,000 |

| dtimein first run

|| 0.198895007 || 463336992

| 0 Cycles Counts || 79,521,944 || 1,423,954,107
| 0 CydlesTypical Time || 0.198805 || 3559885
| 23 TLB misses Counts || 670 || 9,000,009
| 23 TLB misses Typical Time || 0.000130 || 1.750052

| dtimein second run

|
|
|
|
|
|| 0.201848999 || 46317358 |
|
|
|
|

| 0 Cycles Counts || 80,738,797 || 1,423172,151
| 0 Cydles Typical Time || 0201847 || 3557930
| 26 Secondary Data Cache Misses Counts || 12,934 || 4,007,761
| 26 Secondary Data Cache Misses Typical Time || 0.003230 || 1.000838

Quiz : Why wasn't there a performance improvement using nmax=100,000 when the second program was used compared to when the first program was used ?

Quiz: If inthe above two programs, array accessing is not through an index(i), but through i itself, and thus a stride one access is achieved, will the second program with grouping perform better

than the first program without grouping ? Try nmax=1,000,000 and nmax=1024* 1024 and see the difference.

o Remove Cache Trashing by Re-dimensioning Array Sizes not to be Power of Two

If you have tried answering the above quiz, you probably would have redlized that when the dimension of x, y and z arrays is 1024* 1024 (=4MB), a phenomenon called cache trashing occurs
when x(i), y(i) and z(i) are accessed at the same time. By grouping the three arrays into one, the performance isimproved tremendously. Thus grouping is a good method to eliminate cache

trashing when applicable.

In the following, another techniqueisintroduced for eliminating cache trashing.

Arrays with sizes to be powers of two asx, y and z inindex_no_group.f (with nmax=1024*1024) and a, b, ¢, and d arrays shown in L2_cache _trash.f are more likely to have a(1), b(1), ¢(1) and
d(1) having the same middle address bits and thus mapped to the same cache line. By re-dimensioning these arrays allows them to map to different cache lines and thus avoid cache trashing.

Sample program : L2_cache trash_dimen.f

program L2_cache_trash_di nen

Redi nensi on arrays so that their
Accessing a(i,j), b(i,j), c(i,j),

same cache |ine anynore.

dimension a(1024+1,1024),
d(1024+1, 1024)

call random nunber (b)
call random nunber(c)
call random nunber (d)

do j=1,1024
do i=1,1024
a(ij)=b(i,j)+c(i,j)*d(i,j)
end do

end do

wite (12) a

stop
end

wi |l not cause cache trashing because they do not use the

sizes are not power of two.
and d(i,j) sinultaneously

b(1024+1,1024), c(1024+1,1024),

%f90 -0 L2_cache trash_dimen L2_cache_trash_dimen.f ! default optimization -O0

Performance isimproved compared to L2 cache trash.f asevidenced from perfex -a-x -y output

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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/bin/tine perfex -a -x -y L2_cache_trash_di nen
WARNI NG Mul tiplexing events to project totals--inaccuracy possible.
Sunmary for execution of L2_cache_trash_dinen

Based on 250 Mz | P27
M PS R10000 CPU
CPU revision 3.x

L2 Cache Line Reuse..............................
L1 Data Cache Hit Rate...........................
L2 Data Cache Hit Rate............
Ti me accessing nenory/ Total tine
Ti me not neking progress (probably waiting on nenory) / Total tine.
L1--L2 bandwi dth used (MB/s, average per process)........
Memory bandwi dth used (MB/s, average per process)

real 1.317
user 0.601
sys 0.349

L1 Cache Line Reuse....................... . S . T

. 378794
. 404134

MFLOPS (average per process) ...........

114.

cow

064152

. 458506
. 991309
. 775710

. 151430
. 095918
. 567144

Typi cal M ni num Maxi num
Event Counter Name Counter Val ue Time (sec) Time (sec) Time (sec)
0 OYCl @S, L 134959056 0. 539836 0. 539836 0. 539836
16 Cycles................. 134959056 0. 539836 0. 539836 0. 539836
14 ALU FPU progress cycles 80417520 0.321670 0.321670 0.321670
2 Issued loads........... 31936880 0.127748 0.127748 0.127748
18 G aduated | oads 31885184 0.127541 0.127541 0.127541
3 Issued stores.. 9761088 0. 039044 0. 039044 0. 039044
19 Gaduated stores 9755152 0. 039021 0. 039021 0. 039021
21 G aduated floating point instructions 7863872 0. 031455 0. 015728 1. 635685
26 Secondary data cache mi sses.... 81168 0.024513 0.016026
6 Decoded branches................... 4924992 0. 019700 0. 019700 0. 019700
7 Quadwords witten back from scache. e 534784 0. 013690 0. 009049 0. 013690
25 Primary data cache misses..................... 361888 0. 013042 0. 004082 0. 013042
22 Quadwords written back from primary data cache 597184 0. 009197 0. 007501 0. 010630
9 Primary instruction cache misses 11376 0.000820 0. 000256 0.000820
23 TLB misses........... . 1360 0. 000370 0. 000370 0. 000370
24 M spredicted branches.. 28064 0. 000159 0. 000072 0. 000586
10 Secondary instruction cac 128 0. 000039 0. 000025 0. 000043
31 Store/prefetch exclusive to shared block in scache.......... 16 0. 000000 0. 000000 0. 000000
1 Issued instructions............................. 142623200 0. 000000 0. 000000 0.570493
4 1ssued store conditionals 0 0. 000000 0. 000000 0. 000000
5 Failed store conditionals 0 0. 000000 0. 000000 0. 000000
8 Correctable scache data array ECC errors 0 0. 000000 0. 000000 0. 000000
11 Instruction nisprediction fromscache way prediction table.. 624 0. 000000 0. 000000 0. 000002
12 External interventions.................. ... ... ... 432 0. 000000 0. 000000 0. 000000
13 External invalidations. 1856 0. 000000 0. 000000 0. 000000
15 Graduated instructions 159833552 0. 000000 0. 000000 0. 639334
17 Graduated instructions 160007632 0. 000000 0. 000000 0. 640031
20 Graduated store conditionals 0 0. 000000 0. 000000 0. 000000
27 Data misprediction fromscache way prediction table......... 3488 0. 000000 0. 000000 0.000014
28 External intervention hits in scache... 416 0. 000000 0. 000000 0. 000000
29 External invalidation hits in scache... 304 0. 000000 0. 000000 0. 000000
30 Store/prefetch exclusive to clean block in scache........... 0 0. 000000 0. 000000 0. 000000
Statistics
Graduated instructions/cycle........... ... ... ... ... . ... 1.184311
Graduated floating point instructions/cycle 0. 058269
Graduated | oads & stores/cycle 0. 308541
Graduated | oads & stores/floating point 5.295144
M spredi cted branches/ Decoded branches 0. 005698
G aduated | oads/|Issued loads.......... 0.998381
Graduated stores/|ssued stores. .. 0. 999392
Data nispredict/Data scache hits 0.012425
Instruction mispredict/Instruction scache hits... 0. 055477

0.027272

Compiler Assisted Optimization

Profiling reveals which code to tune. The most important tool for tuning is the compiler. The Silicon Graphics compilers are flexible and offer awide variety of compiler options to control their operation.

Refer to the SGI documents listed below to find details about the compiler.
o MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

er 5. Using Basic Compiler Optimization in SGI's Origin2000 and Onyx2 Performance Tuning and Optimization Guide.

o MIPS Compiling and Performance Tuning Guide
o MIPSpro 64-Bit Porting and Transition Guide

The default version of compiler used on turing, hopper, steger and lomax is M | PSpro.7.3.1.1m. Use the module commands If you need a different version.

Useful Files Generated by Compiler

By default, several files are created during processing. Some of these files are useful for finding out what the compiler has done for your code. The compiler adds a suffix to the file portion of the

file name and write the files it creates to your working directory.

| Files " Content

| filel || Assembler listing file. To retain this, specify the -L I ST option.

| fileL " Listing file containing a cross reference and a source listing. To retain thisfile, specify the -listing option.
| files " Assembly language file. To retain this file, specify the -S or -keep option.

| filew2f f || Fortran transformation file. To retain this file, specify -FLIST:=ON

| filew2c.c " C transformation file. To retain thisfile, specify -CLIST:=ON Note: This option does not work with C++

| filelist || APO listing file. To retain this, specify the -apolist option.

Note:

o Usetheassmebler listing file (filel) to find out the default compiler options settings at -00, -O1, -O2, -O3 and -Ofast for option groups:.-DEBUG; -LANG,; -LIST; -OPT; -LNO; -TARG;
; etc.

-TENV; -FLIST; -CLIST; et

o Usethe assembly language file (file.s) to find out the scheduled instructions of your code. If -O3 or -Ofast is used, this file provides information of schedules done by software pipelining.

o Usethetransformation file (filew2f f, filew2c.c) to find out what transformations are performed by LNO, |PA and other components of the compiler.

e |f you use an older version of compiler, for example, MIPSpro.7.2.1.1m, specifying -apolist will create afile.l file which provides the same information as afilellist generated by newer versions,

such as MIPSpro.7.3.1.1m of compiler.

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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Optimization Option Groups:

| Options Group ” Function

| -on || Basic Optimization I
| _OPT: || Misoellaneous Optimization Specification |
| _SWP: || Software Pipelining Specification |
|w || Loop Nest Optimization Specification |
| -IPA: ” Inter-Procedural Analysis Specification |
| _INLINE: || Standalone Inliner Specification |
| -TENV: ” Target Environment Specification |
| -TARG: ” Target Architecture/platiform Specificaionl
e Basic Optimization Levels

The basic optimization flag is-On, wherenisO0, 1, 2, 3, or fast. This flag controls which optimizations the compiler will attempt: the higher the optimization level, the more aggressive the
optimizations that will be tried. In general, the higher the optimization level, the longer compilation takes.

| Options " Action " Notes |
| 00 " No optimization " Default |
| o1 " Local optimization " . |
Optimizations performed at thislevel are amost always beneficia.
02 Extensive optimization
No software pipelining and |oop nest optimization.
May generate results that differ from those obtained when -O2 is specified.
03 Aggressive optimization

Enables software pipelining and loop nest optimizations.

The order of operations may be different from that described in the Fortran standard. The ordering is different because
Maximizes performance for the target platform -OPT:roundoff=3 is put into effect when -Ofast is specified. Floating-point accuracy may be affected.

Ofast ipXx processor type

Enables software pipelining, loop nest optimizations, interprocedural analysis and arithmetic rearrangements.

Suggestions (Quoted from Chapter 5. Using Basic Compiler Optimization in SGI's Origin2000 and Onyx2 Performance Tuning and Optimization Guide)

o Use-00 for Debugging

Use the lowest optimization level, -O0, when debugging your program. Thisflag turns off all optimizations, so there is adirect correspondence between the original source code and the
machine instructions the compiler generates.

Y ou can run a program compiled to higher levels of optimization under a symbolic debugger, but the debugger will have trouble showing you the program'’s progress statement by
statement, because the compiler often merges statements and moves code around. An optimized program, under a debugger, can be made to stop on procedure entry, but cannot reliably
be made to stop on a specified statement.

-O0 isthe default when you don't specify an optimization level, so be sure to specify the optimization level you want.
Start with -O2 for All Modules
A good beginning point for program tuning is optimization level -O2 (or, equivalently, -O). Thislevel performs extensive optimizations that are conservative; that is, they will not cause

the program to have numeric roundoff characteristics different from an unoptimized program. Sophisticated (and time-consuming) optimizations such as software pipelining and loop
nest optimizations are not performed.

o

In addition, the compiler does not rearrange the sequence of code very much at thislevel. At higher levels, the compiler can rearrange code enough that the correspondence between a
source line and the generated code becomes hazy. If you profile a program compiled at the -O2 level, you can make use of a prof -heavy report (see "Including Line-Level Detail").
When you compile at higher levels, it can be difficult to interpret a profile because of code motion and inlining.

Use the -O2 version of your program as the baseline for performance. For some programs, this may be the fastest version. The higher optimization levels have their greatest effects on
loop-intensive code and math-intensive code. They may bring little or no improvement to programs that are strongly oriented to integer logic and file 1/0.

Compile-0O3 or -Ofast for Critical Modules

o

Y ou should identify the program modules that consume a significant fraction of the program's run time and compile them with the highest level of optimization. This may be specified
with either -O3 or -Ofast. Both flags enable software pipelining and loop nest optimizations. The difference between the two is that -Ofast includes additional optimizations:

O Interprocedural anaysis
o Arithmetic rearrangements that can cause numeric roundoff to be different from an unoptimized program
o Assumption that certain pointer variables are independent, not aliased

With no argument, -Of ast assumes the defaullt target for execution (see " Compiler Defaults"). Y ou can specify which machine will run the generated code by naming the "ip" number of
the CPU board. The complete list of valid board numbers is given in the cc(1) reference page. Theip number of any system is displayed by the command hinv -c processor. For al SNO
systems, use-Ofast=ip27 (thisimplies the flags -r10000,-TARG:proc=r10000 and - TARG:platform=ip27).

Example : Compiler Assisted Optimization

Performance (from time command) of L2 cache trash.f with various basic optimization levels

[ime[o0 o1 (o2 o5 o]
Ig” 2932 || 2.968 || 1.628 || 0.630 || 0619 |

IE" 2.684 || 2.728 || 1411 || 0411 || 0411 |

Iw_s” 0196 |[ 0.190|[ 0192 [ 0.196 |[ 0.286 |

Performance of this program is best when -O3 (or -Ofast) is used. The most important optimization for this program by -O3 isthe local array padding (a suboption of Loop Nest
Optimization) which removes the cache _trashing problems. This s evidenced in the transformed code shown below:

The arraysdeclaredin L2 cache trash.f are:
dimension a(1024,1024), b(1024,1024), c(1024,1024), d(1024,1024)

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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LNO transformed (as seen inL 2_cache_trash.w2f.f obtained with -O3 -FL1ST:=ON ) these arrays as:

REAL(4) A(1024_8, 1024_8)
REAL(4) B(1050_8, 1024_8)
REAL(4) C(1050_8, 1024_8)
REAL(4) D(1050_8, 1024_8)

The best performance from -O3 is also reflected in the perfex -a -x -y output (shown below) as compared to (i) the perfex output with -O0 for the same program and (ii) the
perfex output with -O0 and manual padding as shown in L2 cache trash dimen.f

/bin/time perfex -a -x -y L2_cache_trash_QO8
WARNI NG Mul tipl exing events to project totals--inaccuracy possible.
Summary for execution of L2_cache_trash_O8
Based on 250 MHz | P27
M PS R10000 CPU
CPU revision 3.x
Typi cal M ni num Maxi num
Event Counter Name Counter Val ue Time (sec) Time (sec) Time (sec)
0 93268624 0.373074 0.373074 0.373074
16 Cycles................... 93268624 0.373074 0.373074 0.373074
14 ALU FPU progress cycles.. 26248416 0. 104994 0. 104994 0. 104994
2 Issued loads............. . 24451136 0. 097805 0. 097805 0. 097805
18 Graduated loads............... 23960624 0. 095842 0. 095842 0. 095842
21 G aduated floating point instructions 9054560 0. 036218 0. 018109 1. 883348
3 Issued stores................. 8897264 0. 035589 0. 035589 0. 035589
19 Gaduated stores............ 8887248 0. 035549 0. 035549 0. 035549
6 Decoded branches.............. 3784208 0. 015137 0. 015137 0. 015137
22 Quadwords written back from pr 404000 0. 006222 0. 005074 0. 007191
25 Primary data cache nmisses......... 20880 0. 000753 0. 000236 0. 000753
9 Primary instruction cache mi sses. 9744 0. 000702 0. 000219 0. 000702
7 Quadwords written back from scache. . 17024 0. 000436 0. 000288 0. 000436
23 TLB M SS@S. .ttt i ittt et et 608 0. 000166 0. 000166 0. 000166
26 Secondary data cache m SSes.............. ... ..., 160 0.000048 0.000032 0.000054
24 M spredicted branches 5200 0. 000030 0. 000013 0. 000109
10 Secondary instruction cache misses.. 96 0. 000029 0. 000019 0. 000032
31 Store/prefetch exclusive to shared bl ock in scache 16 0. 000000 0. 000000 0. 000000
1 I'ssued instructions 55238128 0. 000000 0. 000000 0. 220953
4 Issued store conditionals... 0 0. 000000 0. 000000 0. 000000
5 Failed store conditionals..... e 0 0. 000000 0. 000000 0. 000000
8 Correctabl e scache data array ECC errors.................... 0 0. 000000 0. 000000 0. 000000
11 Instruction msprediction fromscache way prediction table.. 576 0. 000000 0. 000000 0. 000002
12 External interventions 288 0. 000000 0. 000000 0. 000000
13 External invalidations... 4688 0. 000000 0. 000000 0. 000000
15 Graduated instructions 62291728 0. 000000 0. 000000 0.249167
17 G aduated instructions 62331088 0. 000000 0. 000000 0.249324
20 Graduated store conditionals.. . 0 0. 000000 0. 000000 0. 000000
27 Data misprediction fromscache way prediction table.. 480 0. 000000 0. 000000 0. 000002
28 External intervention hits in scache... . 288 0. 000000 0. 000000 0. 000000
29 External invalidation hits in scache... e 352 0. 000000 0. 000000 0. 000000
30 Store/prefetch exclusive to clean block in scache........... 0 0. 000000 0. 000000 0. 000000
Statistics
Graduat ed instructions/cycle 0. 667874
Graduated floating point instructions/cycle 0. 097080
Graduated loads & stores/cycle............... 0. 352186
Graduated | oads & stores/floating point 3.627771
M spredicted branches/ Decoded branches. . 0. 001374
Graduated | oads/|Issued loads..... 0. 979939
G aduated stores/|ssued stores. 0.998874
Data mi spredict/Data scache hits.. 0. 023166
Instruction mspredict/Instruction scache hits 0. 059701
L1 Cache Line Reuse... 1572.173946
L2 Cache Line Reuse... 129.500000
L1 Data Cache Hit Rate 0.999364
L2 Data Cache Hit Rate.. .. 0.992337
Ti me accessing nenory/ Total tine.... 0. 354776
Ti me not neking progress (probably waiting on menory) / Total tine.. 0.718572
L1--L2 bandwi dth used (MB/s, average per process)........ o 19. 117254
Memory bandwi dth used (MB/s, average per ProCesSS) ... ...........ouuuueunernn.. 0.785001
MFLOPS (@Verage Per ProOCESS) ... v vttt ettt e e e e e e 24.270113
real 1.152
user 0.438
sys 0.372

o Software Pipelining

Software pipelining is a compiler technique in which the compiler generates sequences of instructions (for inner most loops) that are carefully tailored to take maximal advantage of the multiple
execution units of asuperscalar CPU. Chapter 5. Using Basic Compiler Optimization in SGI's Origin2000 and Onyx2 Performance Tuning and Optimization Guide provides more description
regarding software pipelining.

o The R10000/R12000 CPU can execute up to four instructions per cycle. Superscalar time slots may be filled by any combination of:

One load or store operation
OneALU 1instruction
OneALU 2instruction
One floating-point add
One floating-point multiply

ooooo

Example: Software Pipelining - Instruction Scheduling

doi =1, n
y(i) =y(i) +a*x(i)
enddo

Each iteration of the loop requires the following instructions:
Two loads (of x(i) and y(i))

One store (of y(i))

One multiply-add

Two address increments

One loop-end test

One branch

oooooo

The following shows one possible schedule generated by the compiler. Time, in cycles, runs horizontally across the diagram. (obtained from Chapter 5. Using Basic Compiler
Optimization in SGl's Origin2000 and Onyx2 Performance Tuning and Optimization Guide)

In this schedule, the compiler decides to unroll the loop 4 times. Thus, address increment instruction and branch instruction only need to be performed every 4 iterations.

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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Load X HicadY I Madd (FPADD+FPMUL)
B Branch (ALUY) [ ] Pointer Increment B Store Y (Load/Store)

(ALUA)

o

o Software Pipelining can not be done if
o There are subroutine or function callsin loop : use -INLINE to achieve SWP
o There are conditionals or branching in the loop (ex: go to statement)

o Software Pipelining is automatically turned on at -O3 and -Ofast.

o Software Pipelining is not done by default at -O0, -O1 and -O2, because it increases compilation time.

o Use-OPT:swp=ON or -SWP:=ON to turn software pipelining on for lower levels of optimization. (not recommended)

o

The schedule found can vary depending on subtle code differences or the choice of compiler flags.

o

Software pipelining may not always generate an optimal schedule.

o

messages are included.
Example: Obtain Software Pipelining M essages
%f90-0O3-S-c L2 cache trash.f<- GeneratesL 2 cache trash.s

%fgrep swps L2_cache_trash.s<- Extracts softwar e pipelinging info

Tofind how effectively the CPU's hardware resources are being used in the schedule, use -S compiler option to generate an assembly language file (file.s) in which software pipelining

#<swps>

#<swps> Pipelined |loop line 14 steady state <- this |ine nunmber can be approxi mate

#<swps>

#<swps> 256 iterations before pipelining

#<swps> 4 unrollings before pipelining <- this |oop was unrolled 4 times and then software pipelined
#<swps> 20 cycles per 4 iterations <- Every 4 iterations (1 replication) will be completed in 20 cycles
#<swps> 8 flops ( 20% of peak) (madds count as 2)<-This |oop can achieve 20% of floating-point peak
#<swps> 4 flops ( 10% of peak) (madds count as 1)

#<swps> 4 madds ( 20% of peak)

#<swps> 16 memrefs ( 80% of peak)<- Each replication contains 16 memory reference

#<swps> 5 integer ops ( 12% of peak)

#<swps> 25 instructions ( 31% of peak)

#<swps> 2 short trip threshold

#<swps> 13 integer registers used.

#<swps> 18 float registers used.

#<swps>

%fgrep swpf L2_cache trash.s <- Extracts software pipelinging failure

#<swpf> Loop |ine 10 wasn't pipelined because:
#<swpf > Function call in the | oop body
#<swpf >

#<swpf> Loop |ine 11 wasn't pipelined because:
#<swpf > Function call in the |oop body
#<swpf >

#<swpf> Loop |ine 12 wasn't pipelined because:
#<swpf > Function call in the |oop body
#<swpf >

e Loop Nest Optimization (LNO)

o Magjor optimization performed by LNO:

Array Padding

Loop Interchange
Outer Loop Unrolling
Cache Blocking

Loop Fusion

Loop Fission
Prefetching
Gather-Scatter

Vector Intrinsics

ooooooooo

o LNO isused by default at -O3 and -Of ast.

o Use-LNO:opt=0if you want to turn off LNO optimization at -O3 and -Ofast.

o Most optimization can beindividually controlled using LNO suboptions, directives and pragma.
o -LNO: option group is enabled only if -O3 is a'so specified on the compiler command line.

o View the transformation LNO perform for your code in filew?2f.f or filew2c.c

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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f90 - -FLIST: =ON file.f
cc -8 -CLIST.=ON file.c

o Array Padding

o /C-\;rt]mlu%(%/ aignment of arrays can cause significant performance penalities from cache trashing. LNO automatically pads arrays, by spacing them out, to eliminate or reduce
e trashing.

o In the Compiler Assisted Optimization example forL2_cache trash.fshown above, LNO automatically performs padding by increasing the first dimension of arrays as shown
explicitly in the transformed code.

dimension a(1024,1024), b(1024,1024), c(1024,1024), d(1024,1024) ->
REAL(4) A(1024_8, 1024_8)
REAL(4) B(1050_8, 1024_8)
REAL(4) C(1050_8, 1024_8)
REAL(4) D(1050_8, 1024_8)
o Padding performed by LNO is not always shown explicitly in filew?2f.f or file.s.

Sherry, think about array padding for common blocks

o Loop Interchange
o In nested loops, afew factors need to be considered when deciding on the order of loops.
o cache misses - stride-1 memory reference reduces cache misses when loop dimensions are sufficiently large.

Inloop_interchange.f, reorder loops from

do i=1,1024 k=1, 100
do j =1, 100 do j =1, 100
do k=1, 100 do i=1,1024

alow stride-1 memory reference and greatly reduce both tib misses and secondary data cache misses.

o instruction scheduling and loop overhead -

->
di nensi on a(2,100) di nensi on a(2,100)
do i=1,2 do j=1,100
j do i=1,2
a(i,j)=0.0
enddo
enddo

Inthis case, the a(2,100) array fitsin cache, and with the original loop order (i->j), the code achieve full cache reuse. With the new loop order (j->i), the shorter loop i is
inside and software pipelining loop i causes more loop overhead.

o LNO considers these factors when deciding on whether it should reorder loops.
o -LNO:interchange=ON by default with -O3
o If you know that LNO has made the wrong loop interchange, you can instruct it to make a correction by:
o turn off loop interchange
o for the entire module
-LNO:interchange=OFF
o for asingleloop nest, use directive or pragma:

C*$* no interchange for Fortran codes
#pragma no interchange for C codes

o tell the compiler which order you want the loopsin

C*$* interchange (i,j,k) for Fortran codes
#pragma interchange (i,j,k) for C codes

this order requeststhat i is outermost, and k isinnermost.

o Outer Loop Unrolling
o With loop unrolling, multiple copies of the loop body are generated.
o Inner loop unrolling, when beneficial, occurs automatically when -O2 or -O3 or software pipelining isin effect.

->
do j=1,10 do j=1,10
do , 100 do i=1,100, 2
a(i,j)=p(i,j) +1 a(i,j)=p(i,j) +1
a(i+1,j)=b(i+1,j) + 1
end do end do
end do end do

o Outer loop unrolling occurs automatically when -O3 (-LNO) isin effect.

do j=1,10 do j=1,10,2

do , 100 do i=1, 100

a(i,j)=b(i,j) +1 a(i,j)=b(i,j) +1
a(i,j)=b(i,j+1) + 1

end do end do

end do end do

o Outer loop unrolling appliesto (i) outer-most loop unrolling, (ii) middle loop unrolling and (iii) outer-most loop unrolling + middle loop unrolling

In the matrix multiplication example below, the outer-most loop j is unrolled 2 times and the middle k loop is unrolled 4 times by LNO if you compile with -O3
-LNO:blocking=off. Cache Blocking is turned off here for the purpose of demonstrating the effect of loop unrolling without the complication from cache blocking.

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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->

paraneter (mr1200, n=1200, | =1200)

di mension a(ml),b(l,n),c(mn)

doj =1, n do j =1, 1200 2

do k =1, | do k = 1, 1200 4

doi =1, m do i =1, 1200

c(ivj) =c(i,j) +a(i,k)*b(k,j) c(ivj) =c(i,j) +a(i,k)*b(k,j) ‘
c(i,j) =c(i,j) +a(i,k+1)*b(k+1,j)
c(i,j) =c(i,j) +a(i,k+2)*b(k+2,j)
c(i,j) =c(i,j) +a(i,k+3)*b(k+3,j)
c(i,j+1) = c(i,j+1) + a(i,k)*b(k,j+1)
c(i,j+1) = c(i,j+1) + a(i,k+1)*b(k+1,j+1)
c(i,j+1) = c(i,j+1) + a(i,k+2)*b(k+2,j+1)
c(i,j+1) = c(i,j+1) + a(i,k+3)*b(k+3,j+1)

enddo enddo

enddo enddo

enddo enddo

o The numbers of unrolling will be determined by the compiler for best performance.
o Loop unrolling should beindicated in the assembly listing file, file.s but may not be shown explicitly in filew2f f.
o One can control or fine-tune loop unrolling
o for al loops:
o -LNO:outer_unroll=n

unrolls every outer loop for which unrolling is possible by exactly ntimes

o

-LNO:outer_unroll_max=n

tells the compiler that it may unroll any outer loop by at most ntimes

o

-LNO:outer_unroll_prod_max=n
indicates that the product of unrolling the various outer loopsin agiven loop nest will not exceed n times
o forindividual loop:

C*$* unroll (n) for Fortran codes
#pragma unrol |l (n) for C codes

n=0 default unrolling is applied

n=1 no unrolling
n>1 loop unrolls n times

o Loop unrolling may not be performed if the compiler determines that unrolling is not safe or beneficial.

o Cache Blocking

o When data structures are too big to fit in the cache, cache misses are more likely to occur. Cache blocking is a technique to break up data structures into smaller pieces that will
fit in the cache, thus reducing the probability of cache misses and main memory accesses.

Example: Improve Cache Utilization with Cache Blocking

C A B

|

L
i
I
k J
>
k rows

m ro

n columns k columns 1 columns

In matrix multiplication, calculating one element of C requires reading an entire row of A and an entire column of B. Calculating an entire column of C (m elements) requires
reading all rows (m rows) of A once and re-reading one column of B m times. Thus, Calculating n columns of C requires reading all rows of A ntimesand al columnsof B m
times.

If A and B do not fit in the cache, the earlier rows (of A) and columns (of B) (or some elements of them) are likely to be displaced by the later ones. Thus, when the the earlier
rows and columns are needed again, they have to be re-loaded from memory.

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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C A B

e =
1

In blocking, matrix multiplication of the origina arraysis transformed into matrix multiplication of blocks. For example,
C_bl ock(1, 1) =A_bl ock(1,1)*B_bl ock(1,1) + A block(1,2)*B_block(2,1)

When three blocks (one from C, one of A and one from B) all fit in the cache, the elements of these blocks need to be read in from memory only once for each block
multiplication. The number of memory accessesis reduced from the number of rows or columnsto the number of blocks.

Sample program : matrix.f

program matrix_nul t
paraneter (nF1200, n=1200, | =1200)
di mension a(m1),b(l,n),c(mn)

cal | random nunber (a)
call random nunber (b)

doj =1, n
do k =1, |
doi =1, m
c(ij) =c(i.j) +a(i, k) *b(k,j)
enddo
enddo
enddo

wite (12) ¢

st op
end

Matrix multiplication of original arrays transformed into a series of block multiplication
DO tile2J = 1, 1200, 240 ! 5 blocks along j direction
DO tile2K = 1, 1200, 300 ! 4 blocks along k direction
DOl =1, 1200, 5 I unroll i 5 times
DO J = tile2J, (tile2J + 239), 3 ! unroll j in each block 3 times
DO K = tile2K, (tile2K + 299), 1
o1, ) = (1, J) HA(I, K * B(K J)))
ol + 1, J) = (1 +1, J) +(A(l +1, K * B(K J)))
ol +2,3) = (C(I +2, ) +(A(l +2, K * B(K J)))
ol +3, J) = (I +3, J3) +(A(l +3, K * B(K J)))
ol + 4, J) = (1 +4, 3) +(A(l +4, K * B(K J)))
oI, J+1) = (C(I, 3 +1) +(A(l, K * B(K J + 1)))
C(l +1, J+1) =(C(I +1, J +1) +(A(l +1, K * B(K, J + 1)))
ol +2, 3 +1) = (1 +2, J+1) +(A(l +2, K * BK J+1)))
(Il +3, J+1) =(ClI +3, J+1) +A(l +3, K * B(K J+1)))
Ol +4, J+1) =(C(1 +4, J+1) +(A(l +4, K * B(K J+1)))
o1, J+2) = (Cl, J+2) +Al, * B(K, J +2)))
I +1, J+2) =(ClI +1, J +2) +(A(l +1, K * B(K J + 2)))
Ol +2, 3 +2) = (01 +2, 3J+2) +(A(l +2, K * B(K J+2)))
(I +3, J+2) =(CI +3, J+2) +A(l +3, K *BK J+2)))
Ol +4, J+2) =(C(l +4, 3 +2) +(A(l +4, K * B(K J +2)))
END DO
END DO
END DO
END DO
END DO

o -LNO:blocking=ON by default with -O3
o Cache blocking, loop unrolling, loop interchange and array padding are considered together by the compiler to achieve optimum cache utilization.

o The performance of the blocked agorithm matches the performance of the unblocked agorithm on asize that fits entirely on the L2 cache. For example, if the L2 cache sizeis
4MB asin our R10000 Origins Hopper and Steger, all three arrays A, B, C together fit in L2 cache when the dimensions m=n=| ~< 600.

Asthe array sizes get larger, the performance of matrix multiplication (such as usertime, MFLOPS, and L2 cache hit rate) gets worse when no cache blocking is used.
The table here shows the performance of matrix.f with and without cache blocking for various array sizes (with m=n=l). The program is compiled with

f90 - to enabl e cache bl ocki ng
f90 -@3 - LNO bl ocki ng=of f to disable cache bl ocking

http://www.nas.nasa.gov/~schang/origin_opt.htm
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array dimension " cache blocking " user time " MFLOPS" L2 cachehit rate

600 yes 1.062 229.8 0.996
600 no 1.021 239.8 0.998
800 yes 2.454 2216 0.982
800 no 2.769 200.2 0.995
1000 yes 4.685 221.8 0.991
1000 no 5.164 193.3 0.973
1200 yes 8.098 2157 0.977
1200 no 9.970 175.8 0.891
2400 yes 64.498 2145 0.980
2400 no 104.780 132.2 0.837
4800 yes 526.705 2103 0.989
4800 no 906.898 122.1 0.838

o One can control or fine-tune cache blocking

a

a

to specify block sizefor L1 cache, L2 cache or both
o for thewhole module
-LNO:blocking_size=[I1][,12]
o for asingleloop nest

c*$* BLOCKING SI ZE [11][,12]
$pragma bl ocking size ([I11][,12])

to turn off cache blocking
o for thewhole module
-LNO:blocking=off
o for asingle loop nest

c*$* NO BLOCKI NG
$pragma no bl ocki ng

o Loop Fusion

o Loop fusion combines two or multiple loops together.

o Itisatechnique that can improve cache performance and enable other optimizations, such asloop interchange and cache blocking.

o When necessary, loop peeling is performed prior to loop fusion.

->

do i=1,n
a(i)=b(i+1)+b(i-1) a(1)=b(2)+b(0) I loop peeling
enddo
doi=1,n do i=2,n

a(i)=b(i+1)+b(i-1) 'l oop fusion
b(i)=a(i+1)+a(i-1) b(i-1)=a(i)+a(i-2)
enddo enddo

b(n)=a(n+1) +a(n-1) ! 1 oop peeling

With the original program, the two loops can not be fused together because of the dependency of a(i) and a(i+1). If nis sufficiently large, in each loop you need to bring the
entireaand b matricesinto the cache.

By peeling off the caculation of a(1) and b(n), the program can be rewritten to avoid the dependency and the two loops fused together. This eliminates cache misses and memory
references.

o The potential drawback with loop fusion :

With larger loop body, it places more demands on compiler regarding register allocation and software pipelining. It thus increases the compilation time.

o One can control loop fusion

o

for the whole module

-LNG fusi on=0 di sabl e fusion

-LNG fusion=1 default with -G8

-LNG fusi on=2 try fusion before fission

If -LNO fusion=n and -LNG fission=n are both set to 1 or 2, fusion is perforned.

for individual |oops

C*$* FUSE request fusing follow ng | oops
#pragma fuse
C*$* NO FUSI ON prevent fusing |oops

#pragma no fusion

o Loop Fission

O Loop fission breaks larger loops into smaller loops. This is to balance the negative effect by loop fusion.

O Loop fission can requires the invention of new variables.

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi
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->
do i=1,n do i=1,n
s=float (i) stemp(i)=float(i) ! new variable introduced
end do
do i=1,n
a(i)=s a(i)=stenp(i)
enddo enddo

o An exanple of using loop fission to facilitate |oop interchange

enddo

->
do i=1,m
do j=1,n

do i=1,m
b(i,j)=a(i,j) b(i.j)=a(i,j)
enddo enddo

enddo
do j=1,n do j=1,n

do i=1
c(i,j)=b(i+k,j) c(i,j)=n(
enddo enddo

enddo

! loop interchange

! loop interchange
i+k,j)

o Loop fission is useful for vect
each such loop is collapsed int

o One can control |oop fission
o for the whol e nodul es
-LNG fi ssion=0

-LNG fission=1
-LNO fi ssion=2

for individual |oops

C*$* FI SSI ON
#pragma fission
C*$* NO FI SSI ON
#pragma no fission

orization of intrinsics. LNO attenps to split vectorizable intrinsics inot their own loops. If successful,

o asingle call to the corresponding vector intrinsics.

disabl e fission
default with -G8
try fission before fusion

request fissioning of a |oop

prevent fissioning of a |oop

o Prefetching

o Prefetching noves data frommain nenory into cache before their use. This allows sone or all

useful in conpute-intensive ope

rations where data is too large to fit in the cache.

o0 LNO estimates which references will be cache misses and takes different prefetching actions.
O L2 nisses
Regul ar prefetching : inserting prefetch instructions in the programw th unrolling
->
do i=1,n do i=1,n
prefetch b(i+16) ! inserted prefetch instruction
a=a+b(i) a=a-+b(i)
end do end do

You cah find the inserted prefetch instructions in file.s but not in file w2f.f

oLl nisses

Pseudo prefetching :

execution
->
do i=1,4 do i=1,4
t = b(i+3) ! load b(i+3) in advance
a =a + b(i) a=a+ b(i)
a = a + b(i+l) a = a + b(i+l)
a = a + b(i+2) a = a + b(i+2)
a = a + b(i+3) a=a+t
end do
o Prefetching enabled by default with -C3

O One can control prefetching

- LNO pref et ch=0
-LNO prefetch=1
-LNG prefetch=2

no prefetches
default with
aggressive pr

-8, conservative prefetching
ef et chi ng

of the nenory latency to be hidden. It is

does not insert prefetch instruction, instead, noves |oads early in the schedule, exploiting out-of-order

o Gat her-Scatter

o A do | oop that contains a branc

h (like if statement) is not executed efficiently. LNO optinizes such |oops with Gather-Scatter.

do i=1,n
if (t(i).gt.0.0) then

a(i)=h(i)
end if
enddo

i ndex=0

do i=1,n

if (t(i).gt.0.0) then

index=i ndex+1 l'gether the indices

tmp(index)=i 'for which condition is true
end if
end do

do i=1,index
a(tmp(i))=b(tmp(i))

end do

The original code suffers two kinds of efficiency.

O Sonme array elenents are

ski pped neking software pipelining not effective.

o Each tinme if fails, the CPU has already performed a few instructions speculatively before the failure is evident. CPU cycles are

wasted on these instruct

ions and on internal resynchronization.
http://www.nas.nasa.gov/~schang/origin_opt.html
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O Gather-Scatter is on by default with -G8

o One can control

Gat her - Scat ter

-LNO gat her - scat t er =0
-LNO gat her-scatter=1
-LNO gat her - scat t er =2

di sabl e gather-scatter

Performance Profiling and Optimization

for non-nested if statement, default at -C8

for nested if statements,

perfornmance nay be sl ower

o Vector Intrinsics

-LNO vintr=ON by default with -3

o LNO can convert some scalar math intrinsic calls (sin,

cos, exp, log, sqrt, etc.)

into vector calls so that they can take advantage of the

vector math routines in the math library, libm Vector functions are always faster than scalar functions when the vector has at |east ten

el ements.

O The results of using a vector routine may not agree, bit for bit, with the results of the scalar

nuneric agreenent

Exanmpl e

Sanpl e program :

precise to the last bit,

vector_intrinsics.f

di sable this optimzation with -LNO vintr=0FF.

Use Vector Intrinsics for Better Performance

routine.

If

it

is critical

to have

program vector _intrinsics

di mensi on a( 1000, 1024), b( 1000, 1024)
real *4 dtine, tarray(2
t1=dtinme(tarray)

do j=1,1024

do i=1, 1000
a(i,j)=float(i+)

do j=1,1024

do i=1,1000
a(i,j)=float(i+)

enddo

a(i,j)=tan(a(i,j)) cal
b(i,j)=exp(a(i,j)) cal
end do

end do
t2=dtinme(tarray)

enddo

wite (6,*) "tine spent in loop =',t2
wite (12) a
wite (12) b

stop
end

vtanf$(..... )
vexpf$(..... )

f90 -3 -0 vector_intrinsics vector_intrinsics.f ! LNO:vintr=ON by default at -03

f90 -@3 - LNO: vi ntr=0OFF -0 vector_intrinsics_off vector_intrinsics.f !

| vintr " t2 from Hopper " t2from Lomaxl

| ON || 02425 || 0.1485 |

| OFF || 03835 || 0240 |

di sable vector instrinsics

®Inte

r-Procedural Analysis (IPA)

| PA performs program optinizations that can only be done in the presence of the whole program

Most
probl
file.
This

conpi

By contrast, Inter-Procedural Analysis (IPA) algorithms analyze nore than a single procedure (preferably the entire progran) at once.

conpil er optinizations (i.e., without IPA) work within a single procedure (for exanple, function or subroutine) at a time. This hel ps keep the

ems manageable, and is a key aspect of supporting separate conpilation,

intra-procedural focus also presents serious restrictions. By avoiding dependence on information from other procedures,
make worst-case assunptions about the possible effects of those procedures. For instance, at boundary points including all procedure calls, the
ler nust typically save (and/or restore) the state of all variables to or from menory.

post poning nuch of the conpilation process until the link step, when all of the program conponents can be anal yzed toget her.

© Optim zations performed by MPSpro conpiler's IPA include: (see ipa man page for details)

I'nlining
Const ant Propagation

Dead function elimnation
Dead variable elimnation
d obal name optinizations

o -1PA is enabled autonmatically when -Cfast is used.

Common bl ock array padding - pad the |eading dimension to avoid cache conflicts

o Add -I1PA for -Q2 and -3 at both the conpile and link steps when IPAis desired at these two optimzation |evels.

o IPAis controlled fromthe command line with two option groups:

O -INLINE: ...
controls inlining by the standal one inliner. Use when
o-1PA ...

controls general |PA choices. It also includes a main

the full IPAis not suitable.

inliner.

o Both I PA and standal one inlining are disabled when -g is specified on the conpile line.

For nore information on the individual options in the | PA group, see the ipa man page.

because it allows the conpiler to restrict attention to the current source

an optimizer is forced to

This is done by

Exanpl e

Sanpl e program :

Optim zation with Inter-Procedural Analysis

ipa.f90 and sub.f90
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program i pa
do i=1,1000
a=10.0
b=1./a

wite (6,*) a
wite (6,*) b
end do

call sub(i)

stop
end

N
NRPOOONOUAWNE

subroutine sub(i)

wite (6,%) 'i=',i
return
end

[GENEANNEY

% f90 -Ofast -FLIST:=ON -0 ipa.exe ipa.f90 sub.f90 ipa.f90: sub.f90: /opt/M PSpro/M PSpro/usr/lib32/cnplrs/be translates 1.1 into 1.w2f.f, based on
source 1.1

The transformed code, 1.w2f.f

R T
C Fortran file translated from WAl RL Thu Mar 1 15:29:22 2001
R R L L L T
PROGRAM MAI N
I MPLI CI' T NONE
[}
C **** Variables and functions ****
(e}
REAL(4) A
REAL(4) B
| NTEGER(4) |
C
C *EXX statements *rx*
[}
DO =1, 1000, 1
A = 1. 0E+01
B = 1.0000000149E- 01
WRITE(6, *) A
WRI TE(6, *) B
DO
WRI TE(6, *) 'i=", 1001 ! sub has been inlined
STOP
END
If lines 5 and 6 in ipa.f90 are commented out, the transformed code will be:

C F R A AR AR AR R IRk kKRR AR KRR K55k h kKKK AKX KRR 5Tk Kk kKRR A K

C Fortran file translated from WAl RL Thu Mar 1 15:32:50 2001

© AR KRk Rk kKKK KKK Rk kR kKKK KKKk R Rk kXK

PROGRAM MAI N
I MPLI CI' T NONE

[}

C *xx* statements *rrx

C !'dead | oop has been elim nated
WRITE(6, *) 'i=', 1001
STOP
END

e Inlining

Inlining is a conpiler optinization technique in which the call to a procedure is replaced by a copy of the body of the procedure, with the actual
paraneters substituted for the paraneter variables.

Benefits of inlining:
o Elinminate the overhead of calling the procedue
o Gve conpiler nore statenents to optim ze

Di sadvant ages of inlining:
o Increase conpilation time
o Increase size of code

Met hods to activate inlining:
ouse the main inliner in IPA: automatically activated by default when -Cfast is used. Inlining by the main inliner can be turned off with
-1PA i nline=OFF conpiler flag. This does not affect the standal one inliner.
o use the standalone inliner in -INLINE : requires the caller and callee prograns in the same file. Use -INLINE options to contraol inlining. If
you have included inlining directives in your source code, the -1NLINE option nust be specified in order for those directives to be honored.

Chapter 3. General Directives of SG's MPSpro 7 Fortran 90 COmands and Directives Reference Manual provides nore infornation about using the I NLINE
directive.

For nore information on the individual options in the INLINE group, see the ipa(5) nan page.

Exanple : Inlining with -INLINE

Sanple Program : ipa_sub.f90

%at ipa.f90 sub.f90 > ipa_sub.f90 ! get everything in 1 file in order for -INLINE to work

f90 -3 - | NLI NE: must =sub -FLIST:=ON i pa_sub.f90 -> generates ipa_sub.w2f.f, -0O3 does not invoke -IPA

Transformed code from -1 NLINE
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R T T T T

C Fortran file translated from WA RL Thu Mar 1 16

C Rk Rk kKKK KK KKK R Rk kKKK KKK K K R

PROGRAM MAI N
I MPLICI' T NONE

**** Variables and functions ****

[eXeXe]

**%% Tenporary variables ****
| NTEGER(4) 11

*¥rEx statements *rxx

o000 000

VR TE(6, *) A

WRITE(6, *) 'i=", | l!content of sub ha

SUBROUTI NE sub(1)
I MPLICI T NONE
| NTEGER(4) |

*xE*E statements *rrx

[eXeXe]

VRITE(6, *) 'i=', |
RETURN
END SUBROUTI NE

KRR KK KK KK

1 47:11 2001

Kk kK Kk KKk

s been inlined

Not e: You can get the same transforned code if you
1*$* | NLI NE HERE (sub)

%90 -@8 -INLINE -FLIST: =ON i pa_sub. f 90

add the following in the source code just

before calling sub in ipa_sub.f90:

® M scel | aneous Compiler Optim zations

The -OPT: option group controls niscellaneous optim zations.

details.

® Synt ax:

f90 - OPT: ci s=ON: cray_i vdep=OFF b. f

or

f90 - OPT: ci s=ON - OPT: cray_i vdep=CFF b. f

® Three of the

swp[ = (

opt subgroups are described here.

ON| OFF )]

swp=ON enabl es software pipelining. sw=ONis enabled when
- is in effect. The default is OFF.

| EEE_arithmetic=n

This option controls how strictly the generated code adheres
to the | EEE 754 standard for floating-point arithmetic.

| EEE 754 describes a standard for, anong other things, NaN and

inf operands, arithnetic round off, and overflow
n can be one of the follow ng:

n Description

1 Full conpliance with the standard.

Inhibits optimzations that produce |ess accurate
results than required by ANSI/IEEE 754-1985. This is
the default for -00, -0O1 and -02.

2 Pernmits use of the slightly-inexact MPS |V hardware
instructions. (Note: the MPS IV reciprocal and
reci procal square root do not nmeet the accuracy
specified by the | EEE 754 standard)

Al l ows conpiler optinizations that can produce |ess
accurate inexact results (but accurate exact results) on
the target hardware. For exanple, -OPT:recip is enabl ed
to use the hardware recip instruction. Al so,
expressions that would have produced a NaN or an inf may
produce different answers, but otherwi se answers are the
same as those obtained when | EEE arithmetic=1is in
effect. Exanples: 0*X nmay be changed to 0, and X/ X may
be changed to 1 even though this is inaccurate when X is
+inf, -inf, or NaN. This is the default for -03 and

- Of ast .

3 Perforns arbitrary, mathematically valid
transformations, even if they can produce inaccurate
results for operations specified in ANSI/|EEE 754-1985.
These transformations can cause overflow or underflow
for a valid operand range. An exanple is the conversion
of x/y to x*recip(y) for MPS |V targets. Also see the
- OPT: roundof f=n option.

roundof f =n
Specifies the level of acceptable departure from source
| anguage floating-point, round-off, and overflow semantics. n
can be one of the follow ng:

n
0

Description
Inhibits optimzations that mght affect the

floating-point behavior.

Requires strict conpliance with

programmed sequence,

thereby inhibiting nost |oop

optimzations. This is the default when
optim zation levels -00, -01, and -O2 are in effect.

1 Alows sinple transformations that
round-of f or overflow differences.

mi ght cause limted
Conpoundi ng such

transformations could have nore extensive effects.

This option overrides defaults based on the main optimization |level. See opt nan page for

hittp://www.nas.nasa.gov/~schang/origin_opt.htmi

Page: 44



Friday, June 22, 2001

2 Alows nore extensive transformations, such as the
reordering of reduction loops (loop unrolling).
This is the default level when -O3 is in effect.

3 Enabl es any mathematical ly valid transformation.
This is the default for -Ofast.

To obtain best performance in conjunction with software

pi pelining, specify roundoff=2 or roundoff=3. This is because
reassociation is required for many transformations to break
recurrences in loops. Note that the optinizations enabled by
this option can rearrange expressions across parentheses or

Performance Profiling and Optimization

even statenent boundaries. Also see the descriptions for the
-OPT: | EEE arithnetic, -OPT:fast_conplex, -OPT:fast_trunc, and

-OPT: fast _nint options.

® Summary of differences in the -OPT: option setting for M PSpro.7.3.1.1m

| option || 00-02 || 03 || Ofast |
| div_split || OFF || OFF || ON |
| fast_complex || OFF || OFF || ON |
| fast_exp || OFF || ON || ON |
| fast_nint || OFF || OFF || ON |
| fast_trunc || OFF || ON || ON |
| fold_intrinsics || OFF || ON || ON |
| fold_reassociate " OFF " ON ” ON |
| got_call_conversion " OFF " ON ” ON |
| |EEE_arithmetic || 1 || 2 || 2 |
| Olimit || 2000 || 3000” 2147483647|
|recip || OFF || ON || ON |
| reorg_common " OFF " ON ” ON |
| round_off || 0 || 2 || 3 |

Using Tuned Librariesfor Optimization

One way to inprove a progranis performance is to link it with libraries already tuned for the target hardware.

e |ibm (standard math library)

The standard math library includes special "vector intrinsics" (i.e., vectorized version of certain functions) which takes advantage of software
pi pelining capabilities of RL0000 to fill instruction slots in the operation.

scalar intrinsic : sin, cos, tan, asin, acos, atan, exp, log, l0gl0, sqrt

vector instrinsic double precision : vasin, vacos, vatan, etc.

vector instrinsic single precision : vasinf, vacosf, vatanf, etc.

o Vector and scalar routines may differ slightly; however, none of the results differ fromthe mathematically correct result by nore than 2 ULPs.

o Loop-nest optimnizer of the Fortran conpilers nay recognize a vector loop and automatically replaces it with a vector intrinsic call. You can
check if these functions in your programare replaced with the vectorized version in the file.w2f.f or file.w2c.c or file.s by including

-FLIST: =ON, -CLIST:=ON or -S when conpile.

0 - or -Cfast is required in order to use these vector intrinsics.

olmis automatically linked in by Fortran.

f90[f77 -0 a.out file.f -GB [-1m

olmis not automatically linked in by cc or CC. You also need the include file <math. h>.

CClcc -0 a.out file.c+t+ (file.c) -Im

See man math for nore information. An exanple of Vector Intrinsics is given in the Loop Nest tinzation section.

e |ibfastm (not fully IEEE-conpliant, but fast results)

libfastma contains faster |ower-precision scal ar versions of various routines fromlibm a.

o On MPS 4 systens, |ibfastma contains these routines:

doubl e precision : sin, cos, tan, atan2, exp, log, pow, sqgrt
single precision : sinf, cosf, tanf, expf, |ogf, powf, sqrtf

o Routines sin, cos, tan, and atan2 should be run with underflow and overflow floating point traps disabled (the default node) to avoid trapping in

these routines.

o f90|f77|CClcc -0 object program-1|fastm [-1m

® |ibcomplib.sgimth

o The library conplib.sgimath contains an extensive collection of industry standard libraries and SA@ internally devel oped |ibraries:

o BLAS - Basic Linear Al gebra Subprogranms (BLAS) and the extended BLAS (Level 2 and 3)

O EI SPACK - a col lection of double precision Fortran subroutines that conpute the eigenval ues and ei genvectors of nine classes of matrices
O LINPACK - for linear equations and |linear |east squares problenms

O LAPACK - a public domain library of subroutines for solving dense |inear al gebra problens, successor to LINPACK and El SPACK

O FFT - Fast Fourier Transforms
o Convol utions

o direct linear equation solvers for sparse symmetric |linear systems of equations.

o This library is being replaced by SCSL described bel ow. Support from SG for this library will be continued in future releases, until noted

ot herwi se.

o f90|f77|CClcc -0 a.out program-|conplib.sgimath -fastm

o f90|f77|CClcc -0 a.out program-np -|conplib.sgimth_mp -fastm (for nulti-threaded jobs)

o Many of the routines in conplib.sgimth are available from

http://ww. netlib.org
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See man complib.sgimath, man blas, man fft, man conv, man |l apack, man solvers for nore information.

® |ibscsl - SGI Cray Scientific Library (SCSL)

o0 SCSL includes algorithns that are carefully coded and optinized to Silicon Gaphics, Inc. hardware.

© SCSL repl aces conplib. However, LINPACK and ElI SPACK, which are included in conplib, will not be supported in SCSL.

oUsels -1 /opt/scsl/scsl to find the default version of libscsl. If a different version is needed, use module |oad scsl.xxx.
o f90|f77| CCl cc -0 object program-|scs -Ifastm[-Ini

o f90|f77|CClcc -0 object program-nmp -lscs_mp -lIfastm-Im (for nulti-threaded jobs)

See man |ibscsl for details.
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Glossary

o basic block
A sequence of program statements that contains no |abels and no branches. A basic block can only be executed conpletely (because it contains no
labels, it cannot be entered other than at the top; because it contains no branches, it cannot be exited before the end), and in sequence (no
internal |abels or branches). Any program can be deconposed into a sequence of basic blocks. The conpiler optimzes units of basic blocks. An
ideal profile counts the use of each basic bl ock.

o cache trashing

Every reference to an array element results in a cache nmiss due to the unfortunate alignment of arrays, i.e, they all map to the same cache
l ocation.

o constant propagation

Formal paraneters which always have a particul ar constant value can be replaced by the constant, allow ng additional optinization. G obal
variabl es which are initialized to constant values and never nodified can be replaced by the constant.

o gl obal name optim zations
d obal names in shared code nust normally be referenced via addresses in a global table, in case they are defined or preenpted by another DSO
(see dso(5)). If the conpiler knows it is conpiling a main programand that the nane is defined in another of the source files conprising the
main program an absolute reference can be substituted, elininating a nenory reference.

oinlining

Calls to a procedure are replaced by a suitably nodified copy of the called procedure's body inline, even if the callee is in a different source

file.
o stride-one access

A loop over an array accesses array el enents from adjcent nenory addresses.
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